/* * Copyright (c) 2010-2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Ali Saidi */ #include "arch/arm/isa.hh" #include "arch/arm/pmu.hh" #include "arch/arm/system.hh" #include "arch/arm/tlb.hh" #include "arch/arm/tlbi_op.hh" #include "cpu/base.hh" #include "cpu/checker/cpu.hh" #include "debug/Arm.hh" #include "debug/MiscRegs.hh" #include "dev/arm/generic_timer.hh" #include "dev/arm/gic_v3.hh" #include "dev/arm/gic_v3_cpu_interface.hh" #include "params/ArmISA.hh" #include "sim/faults.hh" #include "sim/stat_control.hh" #include "sim/system.hh" namespace ArmISA { ISA::ISA(Params *p) : SimObject(p), system(NULL), _decoderFlavour(p->decoderFlavour), _vecRegRenameMode(p->vecRegRenameMode), pmu(p->pmu), impdefAsNop(p->impdef_nop) { miscRegs[MISCREG_SCTLR_RST] = 0; // Hook up a dummy device if we haven't been configured with a // real PMU. By using a dummy device, we don't need to check that // the PMU exist every time we try to access a PMU register. if (!pmu) pmu = &dummyDevice; // Give all ISA devices a pointer to this ISA pmu->setISA(this); system = dynamic_cast(p->system); // Cache system-level properties if (FullSystem && system) { highestELIs64 = system->highestELIs64(); haveSecurity = system->haveSecurity(); haveLPAE = system->haveLPAE(); haveCrypto = system->haveCrypto(); haveVirtualization = system->haveVirtualization(); haveLargeAsid64 = system->haveLargeAsid64(); physAddrRange = system->physAddrRange(); } else { highestELIs64 = true; // ArmSystem::highestELIs64 does the same haveSecurity = haveLPAE = haveVirtualization = false; haveCrypto = true; haveLargeAsid64 = false; physAddrRange = 32; // dummy value } // GICv3 CPU interface system registers are supported haveGICv3CPUInterface = false; if (system && dynamic_cast(system->getGIC())) { haveGICv3CPUInterface = true; } initializeMiscRegMetadata(); preUnflattenMiscReg(); clear(); } std::vector ISA::lookUpMiscReg(NUM_MISCREGS); const ArmISAParams * ISA::params() const { return dynamic_cast(_params); } void ISA::clear() { const Params *p(params()); SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST]; memset(miscRegs, 0, sizeof(miscRegs)); initID32(p); // We always initialize AArch64 ID registers even // if we are in AArch32. This is done since if we // are in SE mode we don't know if our ArmProcess is // AArch32 or AArch64 initID64(p); // Start with an event in the mailbox miscRegs[MISCREG_SEV_MAILBOX] = 1; // Separate Instruction and Data TLBs miscRegs[MISCREG_TLBTR] = 1; MVFR0 mvfr0 = 0; mvfr0.advSimdRegisters = 2; mvfr0.singlePrecision = 2; mvfr0.doublePrecision = 2; mvfr0.vfpExceptionTrapping = 0; mvfr0.divide = 1; mvfr0.squareRoot = 1; mvfr0.shortVectors = 1; mvfr0.roundingModes = 1; miscRegs[MISCREG_MVFR0] = mvfr0; MVFR1 mvfr1 = 0; mvfr1.flushToZero = 1; mvfr1.defaultNaN = 1; mvfr1.advSimdLoadStore = 1; mvfr1.advSimdInteger = 1; mvfr1.advSimdSinglePrecision = 1; mvfr1.advSimdHalfPrecision = 1; mvfr1.vfpHalfPrecision = 1; miscRegs[MISCREG_MVFR1] = mvfr1; // Reset values of PRRR and NMRR are implementation dependent // @todo: PRRR and NMRR in secure state? miscRegs[MISCREG_PRRR_NS] = (1 << 19) | // 19 (0 << 18) | // 18 (0 << 17) | // 17 (1 << 16) | // 16 (2 << 14) | // 15:14 (0 << 12) | // 13:12 (2 << 10) | // 11:10 (2 << 8) | // 9:8 (2 << 6) | // 7:6 (2 << 4) | // 5:4 (1 << 2) | // 3:2 0; // 1:0 miscRegs[MISCREG_NMRR_NS] = (1 << 30) | // 31:30 (0 << 26) | // 27:26 (0 << 24) | // 25:24 (3 << 22) | // 23:22 (2 << 20) | // 21:20 (0 << 18) | // 19:18 (0 << 16) | // 17:16 (1 << 14) | // 15:14 (0 << 12) | // 13:12 (2 << 10) | // 11:10 (0 << 8) | // 9:8 (3 << 6) | // 7:6 (2 << 4) | // 5:4 (0 << 2) | // 3:2 0; // 1:0 if (FullSystem && system->highestELIs64()) { // Initialize AArch64 state clear64(p); return; } // Initialize AArch32 state... clear32(p, sctlr_rst); } void ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst) { CPSR cpsr = 0; cpsr.mode = MODE_USER; if (FullSystem) { miscRegs[MISCREG_MVBAR] = system->resetAddr(); } miscRegs[MISCREG_CPSR] = cpsr; updateRegMap(cpsr); SCTLR sctlr = 0; sctlr.te = (bool) sctlr_rst.te; sctlr.nmfi = (bool) sctlr_rst.nmfi; sctlr.v = (bool) sctlr_rst.v; sctlr.u = 1; sctlr.xp = 1; sctlr.rao2 = 1; sctlr.rao3 = 1; sctlr.rao4 = 0xf; // SCTLR[6:3] sctlr.uci = 1; sctlr.dze = 1; miscRegs[MISCREG_SCTLR_NS] = sctlr; miscRegs[MISCREG_SCTLR_RST] = sctlr_rst; miscRegs[MISCREG_HCPTR] = 0; miscRegs[MISCREG_CPACR] = 0; miscRegs[MISCREG_FPSID] = p->fpsid; if (haveLPAE) { TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS]; ttbcr.eae = 0; miscRegs[MISCREG_TTBCR_NS] = ttbcr; // Enforce consistency with system-level settings miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5; } if (haveSecurity) { miscRegs[MISCREG_SCTLR_S] = sctlr; miscRegs[MISCREG_SCR] = 0; miscRegs[MISCREG_VBAR_S] = 0; } else { // we're always non-secure miscRegs[MISCREG_SCR] = 1; } //XXX We need to initialize the rest of the state. } void ISA::clear64(const ArmISAParams *p) { CPSR cpsr = 0; Addr rvbar = system->resetAddr(); switch (system->highestEL()) { // Set initial EL to highest implemented EL using associated stack // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset // value case EL3: cpsr.mode = MODE_EL3H; miscRegs[MISCREG_RVBAR_EL3] = rvbar; break; case EL2: cpsr.mode = MODE_EL2H; miscRegs[MISCREG_RVBAR_EL2] = rvbar; break; case EL1: cpsr.mode = MODE_EL1H; miscRegs[MISCREG_RVBAR_EL1] = rvbar; break; default: panic("Invalid highest implemented exception level"); break; } // Initialize rest of CPSR cpsr.daif = 0xf; // Mask all interrupts cpsr.ss = 0; cpsr.il = 0; miscRegs[MISCREG_CPSR] = cpsr; updateRegMap(cpsr); // Initialize other control registers miscRegs[MISCREG_MPIDR_EL1] = 0x80000000; if (haveSecurity) { miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830; miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields } else if (haveVirtualization) { // also MISCREG_SCTLR_EL2 (by mapping) miscRegs[MISCREG_HSCTLR] = 0x30c50830; } else { // also MISCREG_SCTLR_EL1 (by mapping) miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init // Always non-secure miscRegs[MISCREG_SCR_EL3] = 1; } } void ISA::initID32(const ArmISAParams *p) { // Initialize configurable default values miscRegs[MISCREG_MIDR] = p->midr; miscRegs[MISCREG_MIDR_EL1] = p->midr; miscRegs[MISCREG_VPIDR] = p->midr; miscRegs[MISCREG_ID_ISAR0] = p->id_isar0; miscRegs[MISCREG_ID_ISAR1] = p->id_isar1; miscRegs[MISCREG_ID_ISAR2] = p->id_isar2; miscRegs[MISCREG_ID_ISAR3] = p->id_isar3; miscRegs[MISCREG_ID_ISAR4] = p->id_isar4; miscRegs[MISCREG_ID_ISAR5] = p->id_isar5; miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0; miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1; miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2; miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3; miscRegs[MISCREG_ID_ISAR5] = insertBits( miscRegs[MISCREG_ID_ISAR5], 19, 4, haveCrypto ? 0x1112 : 0x0); } void ISA::initID64(const ArmISAParams *p) { // Initialize configurable id registers miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1; miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1; miscRegs[MISCREG_ID_AA64DFR0_EL1] = (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) | (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1; miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1; miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1; miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1; miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1; miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1; miscRegs[MISCREG_ID_DFR0_EL1] = (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1]; // Enforce consistency with system-level settings... // EL3 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12, haveSecurity ? 0x2 : 0x0); // EL2 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8, haveVirtualization ? 0x2 : 0x0); // Large ASID support miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4, haveLargeAsid64 ? 0x2 : 0x0); // Physical address size miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0, encodePhysAddrRange64(physAddrRange)); // Crypto miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits( miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4, haveCrypto ? 0x1112 : 0x0); } void ISA::startup(ThreadContext *tc) { pmu->setThreadContext(tc); if (system) { Gicv3 *gicv3 = dynamic_cast(system->getGIC()); if (gicv3) { gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId())); gicv3CpuInterface->setISA(this); } } } MiscReg ISA::readMiscRegNoEffect(int misc_reg) const { assert(misc_reg < NumMiscRegs); const auto ® = lookUpMiscReg[misc_reg]; // bit masks const auto &map = getMiscIndices(misc_reg); int lower = map.first, upper = map.second; // NB!: apply architectural masks according to desired register, // despite possibly getting value from different (mapped) register. auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32)) |(miscRegs[upper] << 32)); if (val & reg.res0()) { DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n", miscRegName[misc_reg], val & reg.res0()); } if ((val & reg.res1()) != reg.res1()) { DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n", miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1()); } return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao } MiscReg ISA::readMiscReg(int misc_reg, ThreadContext *tc) { CPSR cpsr = 0; PCState pc = 0; SCR scr = 0; if (misc_reg == MISCREG_CPSR) { cpsr = miscRegs[misc_reg]; pc = tc->pcState(); cpsr.j = pc.jazelle() ? 1 : 0; cpsr.t = pc.thumb() ? 1 : 0; return cpsr; } #ifndef NDEBUG if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) warn("Unimplemented system register %s read.\n", miscRegName[misc_reg]); else panic("Unimplemented system register %s read.\n", miscRegName[misc_reg]); } #endif switch (unflattenMiscReg(misc_reg)) { case MISCREG_HCR: { if (!haveVirtualization) return 0; else return readMiscRegNoEffect(MISCREG_HCR); } case MISCREG_CPACR: { const uint32_t ones = (uint32_t)(-1); CPACR cpacrMask = 0; // Only cp10, cp11, and ase are implemented, nothing else should // be readable? (straight copy from the write code) cpacrMask.cp10 = ones; cpacrMask.cp11 = ones; cpacrMask.asedis = ones; // Security Extensions may limit the readability of CPACR if (haveSecurity) { scr = readMiscRegNoEffect(MISCREG_SCR); cpsr = readMiscRegNoEffect(MISCREG_CPSR); if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) { NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); // NB: Skipping the full loop, here if (!nsacr.cp10) cpacrMask.cp10 = 0; if (!nsacr.cp11) cpacrMask.cp11 = 0; } } MiscReg val = readMiscRegNoEffect(MISCREG_CPACR); val &= cpacrMask; DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n", miscRegName[misc_reg], val); return val; } case MISCREG_MPIDR: case MISCREG_MPIDR_EL1: return readMPIDR(system, tc); case MISCREG_VMPIDR: case MISCREG_VMPIDR_EL2: // top bit defined as RES1 return readMiscRegNoEffect(misc_reg) | 0x80000000; case MISCREG_ID_AFR0: // not implemented, so alias MIDR case MISCREG_REVIDR: // not implemented, so alias MIDR case MISCREG_MIDR: cpsr = readMiscRegNoEffect(MISCREG_CPSR); scr = readMiscRegNoEffect(MISCREG_SCR); if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { return readMiscRegNoEffect(misc_reg); } else { return readMiscRegNoEffect(MISCREG_VPIDR); } break; case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI case MISCREG_AIDR: // AUX ID set to 0 case MISCREG_TCMTR: // No TCM's return 0; case MISCREG_CLIDR: warn_once("The clidr register always reports 0 caches.\n"); warn_once("clidr LoUIS field of 0b001 to match current " "ARM implementations.\n"); return 0x00200000; case MISCREG_CCSIDR: warn_once("The ccsidr register isn't implemented and " "always reads as 0.\n"); break; case MISCREG_CTR: // AArch32, ARMv7, top bit set case MISCREG_CTR_EL0: // AArch64 { //all caches have the same line size in gem5 //4 byte words in ARM unsigned lineSizeWords = tc->getSystemPtr()->cacheLineSize() / 4; unsigned log2LineSizeWords = 0; while (lineSizeWords >>= 1) { ++log2LineSizeWords; } CTR ctr = 0; //log2 of minimun i-cache line size (words) ctr.iCacheLineSize = log2LineSizeWords; //b11 - gem5 uses pipt ctr.l1IndexPolicy = 0x3; //log2 of minimum d-cache line size (words) ctr.dCacheLineSize = log2LineSizeWords; //log2 of max reservation size (words) ctr.erg = log2LineSizeWords; //log2 of max writeback size (words) ctr.cwg = log2LineSizeWords; //b100 - gem5 format is ARMv7 ctr.format = 0x4; return ctr; } case MISCREG_ACTLR: warn("Not doing anything for miscreg ACTLR\n"); break; case MISCREG_PMXEVTYPER_PMCCFILTR: case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: case MISCREG_PMCR ... MISCREG_PMOVSSET: return pmu->readMiscReg(misc_reg); case MISCREG_CPSR_Q: panic("shouldn't be reading this register seperately\n"); case MISCREG_FPSCR_QC: return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask; case MISCREG_FPSCR_EXC: return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask; case MISCREG_FPSR: { const uint32_t ones = (uint32_t)(-1); FPSCR fpscrMask = 0; fpscrMask.ioc = ones; fpscrMask.dzc = ones; fpscrMask.ofc = ones; fpscrMask.ufc = ones; fpscrMask.ixc = ones; fpscrMask.idc = ones; fpscrMask.qc = ones; fpscrMask.v = ones; fpscrMask.c = ones; fpscrMask.z = ones; fpscrMask.n = ones; return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; } case MISCREG_FPCR: { const uint32_t ones = (uint32_t)(-1); FPSCR fpscrMask = 0; fpscrMask.len = ones; fpscrMask.stride = ones; fpscrMask.rMode = ones; fpscrMask.fz = ones; fpscrMask.dn = ones; fpscrMask.ahp = ones; return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; } case MISCREG_NZCV: { CPSR cpsr = 0; cpsr.nz = tc->readCCReg(CCREG_NZ); cpsr.c = tc->readCCReg(CCREG_C); cpsr.v = tc->readCCReg(CCREG_V); return cpsr; } case MISCREG_DAIF: { CPSR cpsr = 0; cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif; return cpsr; } case MISCREG_SP_EL0: { return tc->readIntReg(INTREG_SP0); } case MISCREG_SP_EL1: { return tc->readIntReg(INTREG_SP1); } case MISCREG_SP_EL2: { return tc->readIntReg(INTREG_SP2); } case MISCREG_SPSEL: { return miscRegs[MISCREG_CPSR] & 0x1; } case MISCREG_CURRENTEL: { return miscRegs[MISCREG_CPSR] & 0xc; } case MISCREG_L2CTLR: { // mostly unimplemented, just set NumCPUs field from sim and return L2CTLR l2ctlr = 0; // b00:1CPU to b11:4CPUs l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1; return l2ctlr; } case MISCREG_DBGDIDR: /* For now just implement the version number. * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5) */ return 0x5 << 16; case MISCREG_DBGDSCRint: return 0; case MISCREG_ISR: return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( readMiscRegNoEffect(MISCREG_HCR), readMiscRegNoEffect(MISCREG_CPSR), readMiscRegNoEffect(MISCREG_SCR)); case MISCREG_ISR_EL1: return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( readMiscRegNoEffect(MISCREG_HCR_EL2), readMiscRegNoEffect(MISCREG_CPSR), readMiscRegNoEffect(MISCREG_SCR_EL3)); case MISCREG_DCZID_EL0: return 0x04; // DC ZVA clear 64-byte chunks case MISCREG_HCPTR: { MiscReg val = readMiscRegNoEffect(misc_reg); // The trap bit associated with CP14 is defined as RAZ val &= ~(1 << 14); // If a CP bit in NSACR is 0 then the corresponding bit in // HCPTR is RAO/WI bool secure_lookup = haveSecurity && inSecureState(readMiscRegNoEffect(MISCREG_SCR), readMiscRegNoEffect(MISCREG_CPSR)); if (!secure_lookup) { MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR); val |= (mask ^ 0x7FFF) & 0xBFFF; } // Set the bits for unimplemented coprocessors to RAO/WI val |= 0x33FF; return (val); } case MISCREG_HDFAR: // alias for secure DFAR return readMiscRegNoEffect(MISCREG_DFAR_S); case MISCREG_HIFAR: // alias for secure IFAR return readMiscRegNoEffect(MISCREG_IFAR_S); case MISCREG_ID_PFR0: // !ThumbEE | !Jazelle | Thumb | ARM return 0x00000031; case MISCREG_ID_PFR1: { // Timer | Virti | !M Profile | TrustZone | ARMv4 bool haveTimer = (system->getGenericTimer() != NULL); return 0x00000001 | (haveSecurity ? 0x00000010 : 0x0) | (haveVirtualization ? 0x00001000 : 0x0) | (haveTimer ? 0x00010000 : 0x0); } case MISCREG_ID_AA64PFR0_EL1: return 0x0000000000000002 | // AArch{64,32} supported at EL0 0x0000000000000020 | // EL1 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2 (haveSecurity ? 0x0000000000002000 : 0) | // EL3 (haveGICv3CPUInterface ? 0x0000000001000000 : 0); case MISCREG_ID_AA64PFR1_EL1: return 0; // bits [63:0] RES0 (reserved for future use) // Generic Timer registers case MISCREG_CNTHV_CTL_EL2: case MISCREG_CNTHV_CVAL_EL2: case MISCREG_CNTHV_TVAL_EL2: case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: return getGenericTimer(tc).readMiscReg(misc_reg); case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3: case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2: return getGICv3CPUInterface(tc).readMiscReg(misc_reg); default: break; } return readMiscRegNoEffect(misc_reg); } void ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val) { assert(misc_reg < NumMiscRegs); const auto ® = lookUpMiscReg[misc_reg]; // bit masks const auto &map = getMiscIndices(misc_reg); int lower = map.first, upper = map.second; auto v = (val & ~reg.wi()) | reg.rao(); if (upper > 0) { miscRegs[lower] = bits(v, 31, 0); miscRegs[upper] = bits(v, 63, 32); DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n", misc_reg, lower, upper, v); } else { miscRegs[lower] = v; DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n", misc_reg, lower, v); } } void ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc) { MiscReg newVal = val; bool secure_lookup; SCR scr; if (misc_reg == MISCREG_CPSR) { updateRegMap(val); CPSR old_cpsr = miscRegs[MISCREG_CPSR]; int old_mode = old_cpsr.mode; CPSR cpsr = val; if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) { getITBPtr(tc)->invalidateMiscReg(); getDTBPtr(tc)->invalidateMiscReg(); } DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n", miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode); PCState pc = tc->pcState(); pc.nextThumb(cpsr.t); pc.nextJazelle(cpsr.j); pc.illegalExec(cpsr.il == 1); // Follow slightly different semantics if a CheckerCPU object // is connected CheckerCPU *checker = tc->getCheckerCpuPtr(); if (checker) { tc->pcStateNoRecord(pc); } else { tc->pcState(pc); } } else { #ifndef NDEBUG if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) warn("Unimplemented system register %s write with %#x.\n", miscRegName[misc_reg], val); else panic("Unimplemented system register %s write with %#x.\n", miscRegName[misc_reg], val); } #endif switch (unflattenMiscReg(misc_reg)) { case MISCREG_CPACR: { const uint32_t ones = (uint32_t)(-1); CPACR cpacrMask = 0; // Only cp10, cp11, and ase are implemented, nothing else should // be writable cpacrMask.cp10 = ones; cpacrMask.cp11 = ones; cpacrMask.asedis = ones; // Security Extensions may limit the writability of CPACR if (haveSecurity) { scr = readMiscRegNoEffect(MISCREG_SCR); CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) { NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); // NB: Skipping the full loop, here if (!nsacr.cp10) cpacrMask.cp10 = 0; if (!nsacr.cp11) cpacrMask.cp11 = 0; } } MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR); newVal &= cpacrMask; newVal |= old_val & ~cpacrMask; DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", miscRegName[misc_reg], newVal); } break; case MISCREG_CPTR_EL2: { const uint32_t ones = (uint32_t)(-1); CPTR cptrMask = 0; cptrMask.tcpac = ones; cptrMask.tta = ones; cptrMask.tfp = ones; newVal &= cptrMask; cptrMask = 0; cptrMask.res1_13_12_el2 = ones; cptrMask.res1_9_0_el2 = ones; newVal |= cptrMask; DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", miscRegName[misc_reg], newVal); } break; case MISCREG_CPTR_EL3: { const uint32_t ones = (uint32_t)(-1); CPTR cptrMask = 0; cptrMask.tcpac = ones; cptrMask.tta = ones; cptrMask.tfp = ones; newVal &= cptrMask; DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", miscRegName[misc_reg], newVal); } break; case MISCREG_CSSELR: warn_once("The csselr register isn't implemented.\n"); return; case MISCREG_DC_ZVA_Xt: warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n"); return; case MISCREG_FPSCR: { const uint32_t ones = (uint32_t)(-1); FPSCR fpscrMask = 0; fpscrMask.ioc = ones; fpscrMask.dzc = ones; fpscrMask.ofc = ones; fpscrMask.ufc = ones; fpscrMask.ixc = ones; fpscrMask.idc = ones; fpscrMask.ioe = ones; fpscrMask.dze = ones; fpscrMask.ofe = ones; fpscrMask.ufe = ones; fpscrMask.ixe = ones; fpscrMask.ide = ones; fpscrMask.len = ones; fpscrMask.stride = ones; fpscrMask.rMode = ones; fpscrMask.fz = ones; fpscrMask.dn = ones; fpscrMask.ahp = ones; fpscrMask.qc = ones; fpscrMask.v = ones; fpscrMask.c = ones; fpscrMask.z = ones; fpscrMask.n = ones; newVal = (newVal & (uint32_t)fpscrMask) | (readMiscRegNoEffect(MISCREG_FPSCR) & ~(uint32_t)fpscrMask); tc->getDecoderPtr()->setContext(newVal); } break; case MISCREG_FPSR: { const uint32_t ones = (uint32_t)(-1); FPSCR fpscrMask = 0; fpscrMask.ioc = ones; fpscrMask.dzc = ones; fpscrMask.ofc = ones; fpscrMask.ufc = ones; fpscrMask.ixc = ones; fpscrMask.idc = ones; fpscrMask.qc = ones; fpscrMask.v = ones; fpscrMask.c = ones; fpscrMask.z = ones; fpscrMask.n = ones; newVal = (newVal & (uint32_t)fpscrMask) | (readMiscRegNoEffect(MISCREG_FPSCR) & ~(uint32_t)fpscrMask); misc_reg = MISCREG_FPSCR; } break; case MISCREG_FPCR: { const uint32_t ones = (uint32_t)(-1); FPSCR fpscrMask = 0; fpscrMask.len = ones; fpscrMask.stride = ones; fpscrMask.rMode = ones; fpscrMask.fz = ones; fpscrMask.dn = ones; fpscrMask.ahp = ones; newVal = (newVal & (uint32_t)fpscrMask) | (readMiscRegNoEffect(MISCREG_FPSCR) & ~(uint32_t)fpscrMask); misc_reg = MISCREG_FPSCR; } break; case MISCREG_CPSR_Q: { assert(!(newVal & ~CpsrMaskQ)); newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal; misc_reg = MISCREG_CPSR; } break; case MISCREG_FPSCR_QC: { newVal = readMiscRegNoEffect(MISCREG_FPSCR) | (newVal & FpscrQcMask); misc_reg = MISCREG_FPSCR; } break; case MISCREG_FPSCR_EXC: { newVal = readMiscRegNoEffect(MISCREG_FPSCR) | (newVal & FpscrExcMask); misc_reg = MISCREG_FPSCR; } break; case MISCREG_FPEXC: { // vfpv3 architecture, section B.6.1 of DDI04068 // bit 29 - valid only if fpexc[31] is 0 const uint32_t fpexcMask = 0x60000000; newVal = (newVal & fpexcMask) | (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask); } break; case MISCREG_HCR: { if (!haveVirtualization) return; } break; case MISCREG_IFSR: { // ARM ARM (ARM DDI 0406C.b) B4.1.96 const uint32_t ifsrMask = mask(31, 13) | mask(11, 11) | mask(8, 6); newVal = newVal & ~ifsrMask; } break; case MISCREG_DFSR: { // ARM ARM (ARM DDI 0406C.b) B4.1.52 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8); newVal = newVal & ~dfsrMask; } break; case MISCREG_AMAIR0: case MISCREG_AMAIR1: { // ARM ARM (ARM DDI 0406C.b) B4.1.5 // Valid only with LPAE if (!haveLPAE) return; DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal); } break; case MISCREG_SCR: getITBPtr(tc)->invalidateMiscReg(); getDTBPtr(tc)->invalidateMiscReg(); break; case MISCREG_SCTLR: { DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal); scr = readMiscRegNoEffect(MISCREG_SCR); MiscRegIndex sctlr_idx; if (haveSecurity && !highestELIs64 && !scr.ns) { sctlr_idx = MISCREG_SCTLR_S; } else { sctlr_idx = MISCREG_SCTLR_NS; } SCTLR sctlr = miscRegs[sctlr_idx]; SCTLR new_sctlr = newVal; new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization; miscRegs[sctlr_idx] = (MiscReg)new_sctlr; getITBPtr(tc)->invalidateMiscReg(); getDTBPtr(tc)->invalidateMiscReg(); } case MISCREG_MIDR: case MISCREG_ID_PFR0: case MISCREG_ID_PFR1: case MISCREG_ID_DFR0: case MISCREG_ID_MMFR0: case MISCREG_ID_MMFR1: case MISCREG_ID_MMFR2: case MISCREG_ID_MMFR3: case MISCREG_ID_ISAR0: case MISCREG_ID_ISAR1: case MISCREG_ID_ISAR2: case MISCREG_ID_ISAR3: case MISCREG_ID_ISAR4: case MISCREG_ID_ISAR5: case MISCREG_MPIDR: case MISCREG_FPSID: case MISCREG_TLBTR: case MISCREG_MVFR0: case MISCREG_MVFR1: case MISCREG_ID_AA64AFR0_EL1: case MISCREG_ID_AA64AFR1_EL1: case MISCREG_ID_AA64DFR0_EL1: case MISCREG_ID_AA64DFR1_EL1: case MISCREG_ID_AA64ISAR0_EL1: case MISCREG_ID_AA64ISAR1_EL1: case MISCREG_ID_AA64MMFR0_EL1: case MISCREG_ID_AA64MMFR1_EL1: case MISCREG_ID_AA64MMFR2_EL1: case MISCREG_ID_AA64PFR0_EL1: case MISCREG_ID_AA64PFR1_EL1: // ID registers are constants. return; // TLB Invalidate All case MISCREG_TLBIALL: // TLBI all entries, EL0&1, { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); tlbiOp(tc); return; } // TLB Invalidate All, Inner Shareable case MISCREG_TLBIALLIS: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); tlbiOp.broadcast(tc); return; } // Instruction TLB Invalidate All case MISCREG_ITLBIALL: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); tlbiOp(tc); return; } // Data TLB Invalidate All case MISCREG_DTLBIALL: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); tlbiOp(tc); return; } // TLB Invalidate by VA // mcr tlbimval(is) is invalidating all matching entries // regardless of the level of lookup, since in gem5 we cache // in the tlb the last level of lookup only. case MISCREG_TLBIMVA: case MISCREG_TLBIMVAL: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31, 12), bits(newVal, 7,0)); tlbiOp(tc); return; } // TLB Invalidate by VA, Inner Shareable case MISCREG_TLBIMVAIS: case MISCREG_TLBIMVALIS: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31, 12), bits(newVal, 7,0)); tlbiOp.broadcast(tc); return; } // TLB Invalidate by ASID match case MISCREG_TLBIASID: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, bits(newVal, 7,0)); tlbiOp(tc); return; } // TLB Invalidate by ASID match, Inner Shareable case MISCREG_TLBIASIDIS: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, bits(newVal, 7,0)); tlbiOp.broadcast(tc); return; } // mcr tlbimvaal(is) is invalidating all matching entries // regardless of the level of lookup, since in gem5 we cache // in the tlb the last level of lookup only. // TLB Invalidate by VA, All ASID case MISCREG_TLBIMVAA: case MISCREG_TLBIMVAAL: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31,12), false); tlbiOp(tc); return; } // TLB Invalidate by VA, All ASID, Inner Shareable case MISCREG_TLBIMVAAIS: case MISCREG_TLBIMVAALIS: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31,12), false); tlbiOp.broadcast(tc); return; } // mcr tlbimvalh(is) is invalidating all matching entries // regardless of the level of lookup, since in gem5 we cache // in the tlb the last level of lookup only. // TLB Invalidate by VA, Hyp mode case MISCREG_TLBIMVAH: case MISCREG_TLBIMVALH: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31,12), true); tlbiOp(tc); return; } // TLB Invalidate by VA, Hyp mode, Inner Shareable case MISCREG_TLBIMVAHIS: case MISCREG_TLBIMVALHIS: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31,12), true); tlbiOp.broadcast(tc); return; } // mcr tlbiipas2l(is) is invalidating all matching entries // regardless of the level of lookup, since in gem5 we cache // in the tlb the last level of lookup only. // TLB Invalidate by Intermediate Physical Address, Stage 2 case MISCREG_TLBIIPAS2: case MISCREG_TLBIIPAS2L: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 35, 0)) << 12); tlbiOp(tc); return; } // TLB Invalidate by Intermediate Physical Address, Stage 2, // Inner Shareable case MISCREG_TLBIIPAS2IS: case MISCREG_TLBIIPAS2LIS: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 35, 0)) << 12); tlbiOp.broadcast(tc); return; } // Instruction TLB Invalidate by VA case MISCREG_ITLBIMVA: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); ITLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31, 12), bits(newVal, 7,0)); tlbiOp(tc); return; } // Data TLB Invalidate by VA case MISCREG_DTLBIMVA: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); DTLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, mbits(newVal, 31, 12), bits(newVal, 7,0)); tlbiOp(tc); return; } // Instruction TLB Invalidate by ASID match case MISCREG_ITLBIASID: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); ITLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, bits(newVal, 7,0)); tlbiOp(tc); return; } // Data TLB Invalidate by ASID match case MISCREG_DTLBIASID: { assert32(tc); scr = readMiscReg(MISCREG_SCR, tc); DTLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, bits(newVal, 7,0)); tlbiOp(tc); return; } // TLB Invalidate All, Non-Secure Non-Hyp case MISCREG_TLBIALLNSNH: { assert32(tc); TLBIALLN tlbiOp(EL1, false); tlbiOp(tc); return; } // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable case MISCREG_TLBIALLNSNHIS: { assert32(tc); TLBIALLN tlbiOp(EL1, false); tlbiOp.broadcast(tc); return; } // TLB Invalidate All, Hyp mode case MISCREG_TLBIALLH: { assert32(tc); TLBIALLN tlbiOp(EL1, true); tlbiOp(tc); return; } // TLB Invalidate All, Hyp mode, Inner Shareable case MISCREG_TLBIALLHIS: { assert32(tc); TLBIALLN tlbiOp(EL1, true); tlbiOp.broadcast(tc); return; } // AArch64 TLB Invalidate All, EL3 case MISCREG_TLBI_ALLE3: { assert64(tc); TLBIALL tlbiOp(EL3, true); tlbiOp(tc); return; } // AArch64 TLB Invalidate All, EL3, Inner Shareable case MISCREG_TLBI_ALLE3IS: { assert64(tc); TLBIALL tlbiOp(EL3, true); tlbiOp.broadcast(tc); return; } // AArch64 TLB Invalidate All, EL2, Inner Shareable case MISCREG_TLBI_ALLE2: case MISCREG_TLBI_ALLE2IS: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns); tlbiOp(tc); return; } // AArch64 TLB Invalidate All, EL1 case MISCREG_TLBI_ALLE1: case MISCREG_TLBI_VMALLE1: case MISCREG_TLBI_VMALLS12E1: // @todo: handle VMID and stage 2 to enable Virtualization { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); tlbiOp(tc); return; } // AArch64 TLB Invalidate All, EL1, Inner Shareable case MISCREG_TLBI_ALLE1IS: case MISCREG_TLBI_VMALLE1IS: case MISCREG_TLBI_VMALLS12E1IS: // @todo: handle VMID and stage 2 to enable Virtualization { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); tlbiOp.broadcast(tc); return; } // VAEx(IS) and VALEx(IS) are the same because TLBs // only store entries // from the last level of translation table walks // @todo: handle VMID to enable Virtualization // AArch64 TLB Invalidate by VA, EL3 case MISCREG_TLBI_VAE3_Xt: case MISCREG_TLBI_VALE3_Xt: { assert64(tc); TLBIMVA tlbiOp(EL3, true, static_cast(bits(newVal, 43, 0)) << 12, 0xbeef); tlbiOp(tc); return; } // AArch64 TLB Invalidate by VA, EL3, Inner Shareable case MISCREG_TLBI_VAE3IS_Xt: case MISCREG_TLBI_VALE3IS_Xt: { assert64(tc); TLBIMVA tlbiOp(EL3, true, static_cast(bits(newVal, 43, 0)) << 12, 0xbeef); tlbiOp.broadcast(tc); return; } // AArch64 TLB Invalidate by VA, EL2 case MISCREG_TLBI_VAE2_Xt: case MISCREG_TLBI_VALE2_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns, static_cast(bits(newVal, 43, 0)) << 12, 0xbeef); tlbiOp(tc); return; } // AArch64 TLB Invalidate by VA, EL2, Inner Shareable case MISCREG_TLBI_VAE2IS_Xt: case MISCREG_TLBI_VALE2IS_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns, static_cast(bits(newVal, 43, 0)) << 12, 0xbeef); tlbiOp.broadcast(tc); return; } // AArch64 TLB Invalidate by VA, EL1 case MISCREG_TLBI_VAE1_Xt: case MISCREG_TLBI_VALE1_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : bits(newVal, 55, 48); TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 43, 0)) << 12, asid); tlbiOp(tc); return; } // AArch64 TLB Invalidate by VA, EL1, Inner Shareable case MISCREG_TLBI_VAE1IS_Xt: case MISCREG_TLBI_VALE1IS_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : bits(newVal, 55, 48); TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 43, 0)) << 12, asid); tlbiOp.broadcast(tc); return; } // AArch64 TLB Invalidate by ASID, EL1 // @todo: handle VMID to enable Virtualization case MISCREG_TLBI_ASIDE1_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : bits(newVal, 55, 48); TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid); tlbiOp(tc); return; } // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable case MISCREG_TLBI_ASIDE1IS_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : bits(newVal, 55, 48); TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid); tlbiOp.broadcast(tc); return; } // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store // entries from the last level of translation table walks // AArch64 TLB Invalidate by VA, All ASID, EL1 case MISCREG_TLBI_VAAE1_Xt: case MISCREG_TLBI_VAALE1_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 43, 0)) << 12, false); tlbiOp(tc); return; } // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable case MISCREG_TLBI_VAAE1IS_Xt: case MISCREG_TLBI_VAALE1IS_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 43, 0)) << 12, false); tlbiOp.broadcast(tc); return; } // AArch64 TLB Invalidate by Intermediate Physical Address, // Stage 2, EL1 case MISCREG_TLBI_IPAS2E1_Xt: case MISCREG_TLBI_IPAS2LE1_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 35, 0)) << 12); tlbiOp(tc); return; } // AArch64 TLB Invalidate by Intermediate Physical Address, // Stage 2, EL1, Inner Shareable case MISCREG_TLBI_IPAS2E1IS_Xt: case MISCREG_TLBI_IPAS2LE1IS_Xt: { assert64(tc); scr = readMiscReg(MISCREG_SCR, tc); TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, static_cast(bits(newVal, 35, 0)) << 12); tlbiOp.broadcast(tc); return; } case MISCREG_ACTLR: warn("Not doing anything for write of miscreg ACTLR\n"); break; case MISCREG_PMXEVTYPER_PMCCFILTR: case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: case MISCREG_PMCR ... MISCREG_PMOVSSET: pmu->setMiscReg(misc_reg, newVal); break; case MISCREG_HSTR: // TJDBX, now redifined to be RES0 { HSTR hstrMask = 0; hstrMask.tjdbx = 1; newVal &= ~((uint32_t) hstrMask); break; } case MISCREG_HCPTR: { // If a CP bit in NSACR is 0 then the corresponding bit in // HCPTR is RAO/WI. Same applies to NSASEDIS secure_lookup = haveSecurity && inSecureState(readMiscRegNoEffect(MISCREG_SCR), readMiscRegNoEffect(MISCREG_CPSR)); if (!secure_lookup) { MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR); MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF; newVal = (newVal & ~mask) | (oldValue & mask); } break; } case MISCREG_HDFAR: // alias for secure DFAR misc_reg = MISCREG_DFAR_S; break; case MISCREG_HIFAR: // alias for secure IFAR misc_reg = MISCREG_IFAR_S; break; case MISCREG_ATS1CPR: case MISCREG_ATS1CPW: case MISCREG_ATS1CUR: case MISCREG_ATS1CUW: case MISCREG_ATS12NSOPR: case MISCREG_ATS12NSOPW: case MISCREG_ATS12NSOUR: case MISCREG_ATS12NSOUW: case MISCREG_ATS1HR: case MISCREG_ATS1HW: { Request::Flags flags = 0; BaseTLB::Mode mode = BaseTLB::Read; TLB::ArmTranslationType tranType = TLB::NormalTran; Fault fault; switch(misc_reg) { case MISCREG_ATS1CPR: flags = TLB::MustBeOne; tranType = TLB::S1CTran; mode = BaseTLB::Read; break; case MISCREG_ATS1CPW: flags = TLB::MustBeOne; tranType = TLB::S1CTran; mode = BaseTLB::Write; break; case MISCREG_ATS1CUR: flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S1CTran; mode = BaseTLB::Read; break; case MISCREG_ATS1CUW: flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S1CTran; mode = BaseTLB::Write; break; case MISCREG_ATS12NSOPR: if (!haveSecurity) panic("Security Extensions required for ATS12NSOPR"); flags = TLB::MustBeOne; tranType = TLB::S1S2NsTran; mode = BaseTLB::Read; break; case MISCREG_ATS12NSOPW: if (!haveSecurity) panic("Security Extensions required for ATS12NSOPW"); flags = TLB::MustBeOne; tranType = TLB::S1S2NsTran; mode = BaseTLB::Write; break; case MISCREG_ATS12NSOUR: if (!haveSecurity) panic("Security Extensions required for ATS12NSOUR"); flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S1S2NsTran; mode = BaseTLB::Read; break; case MISCREG_ATS12NSOUW: if (!haveSecurity) panic("Security Extensions required for ATS12NSOUW"); flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S1S2NsTran; mode = BaseTLB::Write; break; case MISCREG_ATS1HR: // only really useful from secure mode. flags = TLB::MustBeOne; tranType = TLB::HypMode; mode = BaseTLB::Read; break; case MISCREG_ATS1HW: flags = TLB::MustBeOne; tranType = TLB::HypMode; mode = BaseTLB::Write; break; } // If we're in timing mode then doing the translation in // functional mode then we're slightly distorting performance // results obtained from simulations. The translation should be // done in the same mode the core is running in. NOTE: This // can't be an atomic translation because that causes problems // with unexpected atomic snoop requests. warn("Translating via %s in functional mode! Fix Me!\n", miscRegName[misc_reg]); auto req = std::make_shared( 0, val, 0, flags, Request::funcMasterId, tc->pcState().pc(), tc->contextId()); fault = getDTBPtr(tc)->translateFunctional( req, tc, mode, tranType); TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); HCR hcr = readMiscRegNoEffect(MISCREG_HCR); MiscReg newVal; if (fault == NoFault) { Addr paddr = req->getPaddr(); if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode || ((tranType & TLB::S1S2NsTran) && hcr.vm) )) { newVal = (paddr & mask(39, 12)) | (getDTBPtr(tc)->getAttr()); } else { newVal = (paddr & 0xfffff000) | (getDTBPtr(tc)->getAttr()); } DPRINTF(MiscRegs, "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n", val, newVal); } else { ArmFault *armFault = static_cast(fault.get()); armFault->update(tc); // Set fault bit and FSR FSR fsr = armFault->getFsr(tc); newVal = ((fsr >> 9) & 1) << 11; if (newVal) { // LPAE - rearange fault status newVal |= ((fsr >> 0) & 0x3f) << 1; } else { // VMSA - rearange fault status newVal |= ((fsr >> 0) & 0xf) << 1; newVal |= ((fsr >> 10) & 0x1) << 5; newVal |= ((fsr >> 12) & 0x1) << 6; } newVal |= 0x1; // F bit newVal |= ((armFault->iss() >> 7) & 0x1) << 8; newVal |= armFault->isStage2() ? 0x200 : 0; DPRINTF(MiscRegs, "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n", val, fsr, newVal); } setMiscRegNoEffect(MISCREG_PAR, newVal); return; } case MISCREG_TTBCR: { TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); const uint32_t ones = (uint32_t)(-1); TTBCR ttbcrMask = 0; TTBCR ttbcrNew = newVal; // ARM DDI 0406C.b, ARMv7-32 ttbcrMask.n = ones; // T0SZ if (haveSecurity) { ttbcrMask.pd0 = ones; ttbcrMask.pd1 = ones; } ttbcrMask.epd0 = ones; ttbcrMask.irgn0 = ones; ttbcrMask.orgn0 = ones; ttbcrMask.sh0 = ones; ttbcrMask.ps = ones; // T1SZ ttbcrMask.a1 = ones; ttbcrMask.epd1 = ones; ttbcrMask.irgn1 = ones; ttbcrMask.orgn1 = ones; ttbcrMask.sh1 = ones; if (haveLPAE) ttbcrMask.eae = ones; if (haveLPAE && ttbcrNew.eae) { newVal = newVal & ttbcrMask; } else { newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask)); } // Invalidate TLB MiscReg getITBPtr(tc)->invalidateMiscReg(); getDTBPtr(tc)->invalidateMiscReg(); break; } case MISCREG_TTBR0: case MISCREG_TTBR1: { TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); if (haveLPAE) { if (ttbcr.eae) { // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP // ARMv8 AArch32 bit 63-56 only uint64_t ttbrMask = mask(63,56) | mask(47,40); newVal = (newVal & (~ttbrMask)); } } // Invalidate TLB MiscReg getITBPtr(tc)->invalidateMiscReg(); getDTBPtr(tc)->invalidateMiscReg(); break; } case MISCREG_SCTLR_EL1: case MISCREG_CONTEXTIDR: case MISCREG_PRRR: case MISCREG_NMRR: case MISCREG_MAIR0: case MISCREG_MAIR1: case MISCREG_DACR: case MISCREG_VTTBR: case MISCREG_SCR_EL3: case MISCREG_HCR_EL2: case MISCREG_TCR_EL1: case MISCREG_TCR_EL2: case MISCREG_TCR_EL3: case MISCREG_SCTLR_EL2: case MISCREG_SCTLR_EL3: case MISCREG_HSCTLR: case MISCREG_TTBR0_EL1: case MISCREG_TTBR1_EL1: case MISCREG_TTBR0_EL2: case MISCREG_TTBR1_EL2: case MISCREG_TTBR0_EL3: getITBPtr(tc)->invalidateMiscReg(); getDTBPtr(tc)->invalidateMiscReg(); break; case MISCREG_NZCV: { CPSR cpsr = val; tc->setCCReg(CCREG_NZ, cpsr.nz); tc->setCCReg(CCREG_C, cpsr.c); tc->setCCReg(CCREG_V, cpsr.v); } break; case MISCREG_DAIF: { CPSR cpsr = miscRegs[MISCREG_CPSR]; cpsr.daif = (uint8_t) ((CPSR) newVal).daif; newVal = cpsr; misc_reg = MISCREG_CPSR; } break; case MISCREG_SP_EL0: tc->setIntReg(INTREG_SP0, newVal); break; case MISCREG_SP_EL1: tc->setIntReg(INTREG_SP1, newVal); break; case MISCREG_SP_EL2: tc->setIntReg(INTREG_SP2, newVal); break; case MISCREG_SPSEL: { CPSR cpsr = miscRegs[MISCREG_CPSR]; cpsr.sp = (uint8_t) ((CPSR) newVal).sp; newVal = cpsr; misc_reg = MISCREG_CPSR; } break; case MISCREG_CURRENTEL: { CPSR cpsr = miscRegs[MISCREG_CPSR]; cpsr.el = (uint8_t) ((CPSR) newVal).el; newVal = cpsr; misc_reg = MISCREG_CPSR; } break; case MISCREG_AT_S1E1R_Xt: case MISCREG_AT_S1E1W_Xt: case MISCREG_AT_S1E0R_Xt: case MISCREG_AT_S1E0W_Xt: case MISCREG_AT_S1E2R_Xt: case MISCREG_AT_S1E2W_Xt: case MISCREG_AT_S12E1R_Xt: case MISCREG_AT_S12E1W_Xt: case MISCREG_AT_S12E0R_Xt: case MISCREG_AT_S12E0W_Xt: case MISCREG_AT_S1E3R_Xt: case MISCREG_AT_S1E3W_Xt: { RequestPtr req = std::make_shared(); Request::Flags flags = 0; BaseTLB::Mode mode = BaseTLB::Read; TLB::ArmTranslationType tranType = TLB::NormalTran; Fault fault; switch(misc_reg) { case MISCREG_AT_S1E1R_Xt: flags = TLB::MustBeOne; tranType = TLB::S1E1Tran; mode = BaseTLB::Read; break; case MISCREG_AT_S1E1W_Xt: flags = TLB::MustBeOne; tranType = TLB::S1E1Tran; mode = BaseTLB::Write; break; case MISCREG_AT_S1E0R_Xt: flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S1E0Tran; mode = BaseTLB::Read; break; case MISCREG_AT_S1E0W_Xt: flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S1E0Tran; mode = BaseTLB::Write; break; case MISCREG_AT_S1E2R_Xt: flags = TLB::MustBeOne; tranType = TLB::S1E2Tran; mode = BaseTLB::Read; break; case MISCREG_AT_S1E2W_Xt: flags = TLB::MustBeOne; tranType = TLB::S1E2Tran; mode = BaseTLB::Write; break; case MISCREG_AT_S12E0R_Xt: flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S12E0Tran; mode = BaseTLB::Read; break; case MISCREG_AT_S12E0W_Xt: flags = TLB::MustBeOne | TLB::UserMode; tranType = TLB::S12E0Tran; mode = BaseTLB::Write; break; case MISCREG_AT_S12E1R_Xt: flags = TLB::MustBeOne; tranType = TLB::S12E1Tran; mode = BaseTLB::Read; break; case MISCREG_AT_S12E1W_Xt: flags = TLB::MustBeOne; tranType = TLB::S12E1Tran; mode = BaseTLB::Write; break; case MISCREG_AT_S1E3R_Xt: flags = TLB::MustBeOne; tranType = TLB::S1E3Tran; mode = BaseTLB::Read; break; case MISCREG_AT_S1E3W_Xt: flags = TLB::MustBeOne; tranType = TLB::S1E3Tran; mode = BaseTLB::Write; break; } // If we're in timing mode then doing the translation in // functional mode then we're slightly distorting performance // results obtained from simulations. The translation should be // done in the same mode the core is running in. NOTE: This // can't be an atomic translation because that causes problems // with unexpected atomic snoop requests. warn("Translating via %s in functional mode! Fix Me!\n", miscRegName[misc_reg]); req->setVirt(0, val, 0, flags, Request::funcMasterId, tc->pcState().pc()); req->setContext(tc->contextId()); fault = getDTBPtr(tc)->translateFunctional(req, tc, mode, tranType); MiscReg newVal; if (fault == NoFault) { Addr paddr = req->getPaddr(); uint64_t attr = getDTBPtr(tc)->getAttr(); uint64_t attr1 = attr >> 56; if (!attr1 || attr1 ==0x44) { attr |= 0x100; attr &= ~ uint64_t(0x80); } newVal = (paddr & mask(47, 12)) | attr; DPRINTF(MiscRegs, "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n", val, newVal); } else { ArmFault *armFault = static_cast(fault.get()); armFault->update(tc); // Set fault bit and FSR FSR fsr = armFault->getFsr(tc); CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); if (cpsr.width) { // AArch32 newVal = ((fsr >> 9) & 1) << 11; // rearrange fault status newVal |= ((fsr >> 0) & 0x3f) << 1; newVal |= 0x1; // F bit newVal |= ((armFault->iss() >> 7) & 0x1) << 8; newVal |= armFault->isStage2() ? 0x200 : 0; } else { // AArch64 newVal = 1; // F bit newVal |= fsr << 1; // FST // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit. newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW newVal |= armFault->isStage2() ? 1 << 9 : 0; // S newVal |= 1 << 11; // RES1 } DPRINTF(MiscRegs, "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n", val, fsr, newVal); } setMiscRegNoEffect(MISCREG_PAR_EL1, newVal); return; } case MISCREG_SPSR_EL3: case MISCREG_SPSR_EL2: case MISCREG_SPSR_EL1: // Force bits 23:21 to 0 newVal = val & ~(0x7 << 21); break; case MISCREG_L2CTLR: warn("miscreg L2CTLR (%s) written with %#x. ignored...\n", miscRegName[misc_reg], uint32_t(val)); break; // Generic Timer registers case MISCREG_CNTHV_CTL_EL2: case MISCREG_CNTHV_CVAL_EL2: case MISCREG_CNTHV_TVAL_EL2: case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: getGenericTimer(tc).setMiscReg(misc_reg, newVal); break; case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3: case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2: getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal); return; } } setMiscRegNoEffect(misc_reg, newVal); } BaseISADevice & ISA::getGenericTimer(ThreadContext *tc) { // We only need to create an ISA interface the first time we try // to access the timer. if (timer) return *timer.get(); assert(system); GenericTimer *generic_timer(system->getGenericTimer()); if (!generic_timer) { panic("Trying to get a generic timer from a system that hasn't " "been configured to use a generic timer.\n"); } timer.reset(new GenericTimerISA(*generic_timer, tc->contextId())); timer->setThreadContext(tc); return *timer.get(); } BaseISADevice & ISA::getGICv3CPUInterface(ThreadContext *tc) { panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!"); return *gicv3CpuInterface.get(); } } ArmISA::ISA * ArmISAParams::create() { return new ArmISA::ISA(this); }