// -*- mode:c++ -*- // Copyright (c) 2010-2013,2016 ARM Limited // All rights reserved // // The license below extends only to copyright in the software and shall // not be construed as granting a license to any other intellectual // property including but not limited to intellectual property relating // to a hardware implementation of the functionality of the software // licensed hereunder. You may use the software subject to the license // terms below provided that you ensure that this notice is replicated // unmodified and in its entirety in all distributions of the software, // modified or unmodified, in source code or in binary form. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Gabe Black output header {{ template class VfpMacroRegRegOp : public VfpMacroOp { public: VfpMacroRegRegOp(ExtMachInst _machInst, IntRegIndex _dest, IntRegIndex _op1, bool _wide) : VfpMacroOp("VfpMacroRegRegOp", _machInst, No_OpClass, _wide) { numMicroops = machInst.fpscrLen + 1; assert(numMicroops > 1); microOps = new StaticInstPtr[numMicroops]; for (unsigned i = 0; i < numMicroops; i++) { VfpMicroMode mode = VfpMicroop; if (i == 0) mode = VfpFirstMicroop; else if (i == numMicroops - 1) mode = VfpLastMicroop; microOps[i] = new Micro(_machInst, _dest, _op1, mode); nextIdxs(_dest, _op1); } } }; template StaticInstPtr decodeVfpRegRegOp(ExtMachInst machInst, IntRegIndex dest, IntRegIndex op1, bool wide) { if (machInst.fpscrLen == 0 || VfpMacroOp::inScalarBank(dest)) { return new VfpOp(machInst, dest, op1); } else { return new VfpMacroRegRegOp(machInst, dest, op1, wide); } } template class VfpMacroRegImmOp : public VfpMacroOp { public: VfpMacroRegImmOp(ExtMachInst _machInst, IntRegIndex _dest, uint64_t _imm, bool _wide) : VfpMacroOp("VfpMacroRegImmOp", _machInst, No_OpClass, _wide) { numMicroops = machInst.fpscrLen + 1; microOps = new StaticInstPtr[numMicroops]; for (unsigned i = 0; i < numMicroops; i++) { VfpMicroMode mode = VfpMicroop; if (i == 0) mode = VfpFirstMicroop; else if (i == numMicroops - 1) mode = VfpLastMicroop; microOps[i] = new Micro(_machInst, _dest, _imm, mode); nextIdxs(_dest); } } }; template StaticInstPtr decodeVfpRegImmOp(ExtMachInst machInst, IntRegIndex dest, uint64_t imm, bool wide) { if (machInst.fpscrLen == 0 || VfpMacroOp::inScalarBank(dest)) { return new VfpOp(machInst, dest, imm); } else { return new VfpMacroRegImmOp(machInst, dest, imm, wide); } } template class VfpMacroRegRegImmOp : public VfpMacroOp { public: VfpMacroRegRegImmOp(ExtMachInst _machInst, IntRegIndex _dest, IntRegIndex _op1, uint64_t _imm, bool _wide) : VfpMacroOp("VfpMacroRegRegImmOp", _machInst, No_OpClass, _wide) { numMicroops = machInst.fpscrLen + 1; microOps = new StaticInstPtr[numMicroops]; for (unsigned i = 0; i < numMicroops; i++) { VfpMicroMode mode = VfpMicroop; if (i == 0) mode = VfpFirstMicroop; else if (i == numMicroops - 1) mode = VfpLastMicroop; microOps[i] = new Micro(_machInst, _dest, _op1, _imm, mode); nextIdxs(_dest, _op1); } } }; template StaticInstPtr decodeVfpRegRegImmOp(ExtMachInst machInst, IntRegIndex dest, IntRegIndex op1, uint64_t imm, bool wide) { if (machInst.fpscrLen == 0 || VfpMacroOp::inScalarBank(dest)) { return new VfpOp(machInst, dest, op1, imm); } else { return new VfpMacroRegRegImmOp(machInst, dest, op1, imm, wide); } } template class VfpMacroRegRegRegOp : public VfpMacroOp { public: VfpMacroRegRegRegOp(ExtMachInst _machInst, IntRegIndex _dest, IntRegIndex _op1, IntRegIndex _op2, bool _wide) : VfpMacroOp("VfpMacroRegRegRegOp", _machInst, No_OpClass, _wide) { numMicroops = machInst.fpscrLen + 1; microOps = new StaticInstPtr[numMicroops]; for (unsigned i = 0; i < numMicroops; i++) { VfpMicroMode mode = VfpMicroop; if (i == 0) mode = VfpFirstMicroop; else if (i == numMicroops - 1) mode = VfpLastMicroop; microOps[i] = new Micro(_machInst, _dest, _op1, _op2, mode); nextIdxs(_dest, _op1, _op2); } } }; template StaticInstPtr decodeVfpRegRegRegOp(ExtMachInst machInst, IntRegIndex dest, IntRegIndex op1, IntRegIndex op2, bool wide) { if (machInst.fpscrLen == 0 || VfpMacroOp::inScalarBank(dest)) { return new VfpOp(machInst, dest, op1, op2); } else { return new VfpMacroRegRegRegOp(machInst, dest, op1, op2, wide); } } }}; let {{ header_output = "" decoder_output = "" exec_output = "" vmsrCode = vmsrEnabledCheckCode + ''' MiscDest = Op1; ''' vmsrIop = InstObjParams("vmsr", "Vmsr", "FpRegRegImmOp", { "code": vmsrCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, ["IsSerializeAfter","IsNonSpeculative"]) header_output += FpRegRegImmOpDeclare.subst(vmsrIop); decoder_output += FpRegRegImmOpConstructor.subst(vmsrIop); exec_output += PredOpExecute.subst(vmsrIop); vmsrFpscrCode = vmsrEnabledCheckCode + ''' Fpscr = Op1 & ~FpCondCodesMask; FpCondCodes = Op1 & FpCondCodesMask; ''' vmsrFpscrIop = InstObjParams("vmsr", "VmsrFpscr", "FpRegRegOp", { "code": vmsrFpscrCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, ["IsSerializeAfter","IsNonSpeculative", "IsSquashAfter"]) header_output += FpRegRegOpDeclare.subst(vmsrFpscrIop); decoder_output += FpRegRegOpConstructor.subst(vmsrFpscrIop); exec_output += PredOpExecute.subst(vmsrFpscrIop); vmrsCode = vmrsEnabledCheckCode + ''' CPSR cpsr = Cpsr; SCR scr = Scr; if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) { HCR hcr = Hcr; bool hypTrap = false; switch(xc->tcBase()->flattenRegId(RegId(MiscRegClass, op1)).index()) { case MISCREG_FPSID: hypTrap = hcr.tid0; break; case MISCREG_MVFR0: case MISCREG_MVFR1: hypTrap = hcr.tid3; break; } if (hypTrap) { return std::make_shared(machInst, imm, EC_TRAPPED_CP10_MRC_VMRS); } } Dest = MiscOp1; ''' vmrsIop = InstObjParams("vmrs", "Vmrs", "FpRegRegImmOp", { "code": vmrsCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, ["IsSerializeBefore"]) header_output += FpRegRegImmOpDeclare.subst(vmrsIop); decoder_output += FpRegRegImmOpConstructor.subst(vmrsIop); exec_output += PredOpExecute.subst(vmrsIop); vmrsFpscrIop = InstObjParams("vmrs", "VmrsFpscr", "FpRegRegOp", { "code": vmrsEnabledCheckCode + \ "Dest = Fpscr | FpCondCodes;", "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, ["IsSerializeBefore"]) header_output += FpRegRegOpDeclare.subst(vmrsFpscrIop); decoder_output += FpRegRegOpConstructor.subst(vmrsFpscrIop); exec_output += PredOpExecute.subst(vmrsFpscrIop); vmrsApsrFpscrCode = vfpEnabledCheckCode + ''' FPSCR fpscr = FpCondCodes; CondCodesNZ = (fpscr.n << 1) | fpscr.z; CondCodesC = fpscr.c; CondCodesV = fpscr.v; ''' vmrsApsrFpscrIop = InstObjParams("vmrs", "VmrsApsrFpscr", "PredOp", { "code": vmrsApsrFpscrCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }) header_output += BasicDeclare.subst(vmrsApsrFpscrIop); decoder_output += BasicConstructor.subst(vmrsApsrFpscrIop); exec_output += PredOpExecute.subst(vmrsApsrFpscrIop); vmovImmSCode = vfpEnabledCheckCode + ''' FpDest_uw = bits(imm, 31, 0); ''' vmovImmSIop = InstObjParams("vmov", "VmovImmS", "FpRegImmOp", { "code": vmovImmSCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegImmOpDeclare.subst(vmovImmSIop); decoder_output += FpRegImmOpConstructor.subst(vmovImmSIop); exec_output += PredOpExecute.subst(vmovImmSIop); vmovImmDCode = vfpEnabledCheckCode + ''' FpDestP0_uw = bits(imm, 31, 0); FpDestP1_uw = bits(imm, 63, 32); ''' vmovImmDIop = InstObjParams("vmov", "VmovImmD", "FpRegImmOp", { "code": vmovImmDCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegImmOpDeclare.subst(vmovImmDIop); decoder_output += FpRegImmOpConstructor.subst(vmovImmDIop); exec_output += PredOpExecute.subst(vmovImmDIop); vmovImmQCode = vfpEnabledCheckCode + ''' FpDestP0_uw = bits(imm, 31, 0); FpDestP1_uw = bits(imm, 63, 32); FpDestP2_uw = bits(imm, 31, 0); FpDestP3_uw = bits(imm, 63, 32); ''' vmovImmQIop = InstObjParams("vmov", "VmovImmQ", "FpRegImmOp", { "code": vmovImmQCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegImmOpDeclare.subst(vmovImmQIop); decoder_output += FpRegImmOpConstructor.subst(vmovImmQIop); exec_output += PredOpExecute.subst(vmovImmQIop); vmovRegSCode = vfpEnabledCheckCode + ''' FpDest_uw = FpOp1_uw; ''' vmovRegSIop = InstObjParams("vmov", "VmovRegS", "FpRegRegOp", { "code": vmovRegSCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegOpDeclare.subst(vmovRegSIop); decoder_output += FpRegRegOpConstructor.subst(vmovRegSIop); exec_output += PredOpExecute.subst(vmovRegSIop); vmovRegDCode = vfpEnabledCheckCode + ''' FpDestP0_uw = FpOp1P0_uw; FpDestP1_uw = FpOp1P1_uw; ''' vmovRegDIop = InstObjParams("vmov", "VmovRegD", "FpRegRegOp", { "code": vmovRegDCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegOpDeclare.subst(vmovRegDIop); decoder_output += FpRegRegOpConstructor.subst(vmovRegDIop); exec_output += PredOpExecute.subst(vmovRegDIop); vmovRegQCode = vfpEnabledCheckCode + ''' FpDestP0_uw = FpOp1P0_uw; FpDestP1_uw = FpOp1P1_uw; FpDestP2_uw = FpOp1P2_uw; FpDestP3_uw = FpOp1P3_uw; ''' vmovRegQIop = InstObjParams("vmov", "VmovRegQ", "FpRegRegOp", { "code": vmovRegQCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegOpDeclare.subst(vmovRegQIop); decoder_output += FpRegRegOpConstructor.subst(vmovRegQIop); exec_output += PredOpExecute.subst(vmovRegQIop); vmovCoreRegBCode = simdEnabledCheckCode + ''' FpDest_uw = insertBits(FpDest_uw, imm * 8 + 7, imm * 8, Op1_ub); ''' vmovCoreRegBIop = InstObjParams("vmov", "VmovCoreRegB", "FpRegRegImmOp", { "code": vmovCoreRegBCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vmovCoreRegBIop); decoder_output += FpRegRegImmOpConstructor.subst(vmovCoreRegBIop); exec_output += PredOpExecute.subst(vmovCoreRegBIop); vmovCoreRegHCode = simdEnabledCheckCode + ''' FpDest_uw = insertBits(FpDest_uw, imm * 16 + 15, imm * 16, Op1_uh); ''' vmovCoreRegHIop = InstObjParams("vmov", "VmovCoreRegH", "FpRegRegImmOp", { "code": vmovCoreRegHCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vmovCoreRegHIop); decoder_output += FpRegRegImmOpConstructor.subst(vmovCoreRegHIop); exec_output += PredOpExecute.subst(vmovCoreRegHIop); vmovCoreRegWCode = vfpEnabledCheckCode + ''' FpDest_uw = Op1_uw; ''' vmovCoreRegWIop = InstObjParams("vmov", "VmovCoreRegW", "FpRegRegOp", { "code": vmovCoreRegWCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegOpDeclare.subst(vmovCoreRegWIop); decoder_output += FpRegRegOpConstructor.subst(vmovCoreRegWIop); exec_output += PredOpExecute.subst(vmovCoreRegWIop); vmovRegCoreUBCode = vfpEnabledCheckCode + ''' assert(imm < 4); Dest = bits(FpOp1_uw, imm * 8 + 7, imm * 8); ''' vmovRegCoreUBIop = InstObjParams("vmov", "VmovRegCoreUB", "FpRegRegImmOp", { "code": vmovRegCoreUBCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vmovRegCoreUBIop); decoder_output += FpRegRegImmOpConstructor.subst(vmovRegCoreUBIop); exec_output += PredOpExecute.subst(vmovRegCoreUBIop); vmovRegCoreUHCode = vfpEnabledCheckCode + ''' assert(imm < 2); Dest = bits(FpOp1_uw, imm * 16 + 15, imm * 16); ''' vmovRegCoreUHIop = InstObjParams("vmov", "VmovRegCoreUH", "FpRegRegImmOp", { "code": vmovRegCoreUHCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vmovRegCoreUHIop); decoder_output += FpRegRegImmOpConstructor.subst(vmovRegCoreUHIop); exec_output += PredOpExecute.subst(vmovRegCoreUHIop); vmovRegCoreSBCode = vfpEnabledCheckCode + ''' assert(imm < 4); Dest = sext<8>(bits(FpOp1_uw, imm * 8 + 7, imm * 8)); ''' vmovRegCoreSBIop = InstObjParams("vmov", "VmovRegCoreSB", "FpRegRegImmOp", { "code": vmovRegCoreSBCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vmovRegCoreSBIop); decoder_output += FpRegRegImmOpConstructor.subst(vmovRegCoreSBIop); exec_output += PredOpExecute.subst(vmovRegCoreSBIop); vmovRegCoreSHCode = vfpEnabledCheckCode + ''' assert(imm < 2); Dest = sext<16>(bits(FpOp1_uw, imm * 16 + 15, imm * 16)); ''' vmovRegCoreSHIop = InstObjParams("vmov", "VmovRegCoreSH", "FpRegRegImmOp", { "code": vmovRegCoreSHCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vmovRegCoreSHIop); decoder_output += FpRegRegImmOpConstructor.subst(vmovRegCoreSHIop); exec_output += PredOpExecute.subst(vmovRegCoreSHIop); vmovRegCoreWCode = vfpEnabledCheckCode + ''' Dest = FpOp1_uw; ''' vmovRegCoreWIop = InstObjParams("vmov", "VmovRegCoreW", "FpRegRegOp", { "code": vmovRegCoreWCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegOpDeclare.subst(vmovRegCoreWIop); decoder_output += FpRegRegOpConstructor.subst(vmovRegCoreWIop); exec_output += PredOpExecute.subst(vmovRegCoreWIop); vmov2Reg2CoreCode = vfpEnabledCheckCode + ''' FpDestP0_uw = Op1_uw; FpDestP1_uw = Op2_uw; ''' vmov2Reg2CoreIop = InstObjParams("vmov", "Vmov2Reg2Core", "FpRegRegRegOp", { "code": vmov2Reg2CoreCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vmov2Reg2CoreIop); decoder_output += FpRegRegRegOpConstructor.subst(vmov2Reg2CoreIop); exec_output += PredOpExecute.subst(vmov2Reg2CoreIop); vmov2Core2RegCode = vfpEnabledCheckCode + ''' Dest_uw = FpOp2P0_uw; Op1_uw = FpOp2P1_uw; ''' vmov2Core2RegIop = InstObjParams("vmov", "Vmov2Core2Reg", "FpRegRegRegOp", { "code": vmov2Core2RegCode, "predicate_test": predicateTest, "op_class": "SimdFloatMiscOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vmov2Core2RegIop); decoder_output += FpRegRegRegOpConstructor.subst(vmov2Core2RegIop); exec_output += PredOpExecute.subst(vmov2Core2RegIop); }}; let {{ header_output = "" decoder_output = "" exec_output = "" singleSimpleCode = vfpEnabledCheckCode + ''' FPSCR fpscr M5_VAR_USED = (FPSCR) FpscrExc; FpDest = %(op)s; ''' singleCode = singleSimpleCode + ''' FpscrExc = fpscr; ''' singleTernOp = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); float cOp1 = FpOp1; float cOp2 = FpOp2; float cOp3 = FpDestP0; FpDestP0 = ternaryOp(fpscr, %(palam)s, %(op)s, fpscr.fz, fpscr.dn, fpscr.rMode); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' singleBinOp = "binaryOp(fpscr, FpOp1, FpOp2," + \ "%(func)s, fpscr.fz, fpscr.dn, fpscr.rMode)" singleUnaryOp = "unaryOp(fpscr, FpOp1, %(func)s, fpscr.fz, fpscr.rMode)" doubleCode = vfpEnabledCheckCode + ''' FPSCR fpscr M5_VAR_USED = (FPSCR) FpscrExc; double dest = %(op)s; FpDestP0_uw = dblLow(dest); FpDestP1_uw = dblHi(dest); FpscrExc = fpscr; ''' doubleTernOp = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); double cOp2 = dbl(FpOp2P0_uw, FpOp2P1_uw); double cOp3 = dbl(FpDestP0_uw, FpDestP1_uw); double cDest = ternaryOp(fpscr, %(palam)s, %(op)s, fpscr.fz, fpscr.dn, fpscr.rMode); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' doubleBinOp = ''' binaryOp(fpscr, dbl(FpOp1P0_uw, FpOp1P1_uw), dbl(FpOp2P0_uw, FpOp2P1_uw), %(func)s, fpscr.fz, fpscr.dn, fpscr.rMode); ''' doubleUnaryOp = ''' unaryOp(fpscr, dbl(FpOp1P0_uw, FpOp1P1_uw), %(func)s, fpscr.fz, fpscr.rMode) ''' def buildTernaryFpOp(Name, base, opClass, singleOp, doubleOp, paramStr): global header_output, decoder_output, exec_output code = singleTernOp % { "op": singleOp, "palam": paramStr } sIop = InstObjParams(Name.lower() + "s", Name + "S", base, { "code": code, "predicate_test": predicateTest, "op_class": opClass }, []) code = doubleTernOp % { "op": doubleOp, "palam": paramStr } dIop = InstObjParams(Name.lower() + "d", Name + "D", base, { "code": code, "predicate_test": predicateTest, "op_class": opClass }, []) declareTempl = eval(base + "Declare"); constructorTempl = eval(base + "Constructor"); for iop in sIop, dIop: header_output += declareTempl.subst(iop) decoder_output += constructorTempl.subst(iop) exec_output += PredOpExecute.subst(iop) buildTernaryFpOp("Vfma", "FpRegRegRegOp", "SimdFloatMultAccOp", "fpMulAdd", "fpMulAdd", " cOp1, cOp2, cOp3" ) buildTernaryFpOp("Vfms", "FpRegRegRegOp", "SimdFloatMultAccOp", "fpMulAdd", "fpMulAdd", "-cOp1, cOp2, cOp3" ) buildTernaryFpOp("Vfnma", "FpRegRegRegOp", "SimdFloatMultAccOp", "fpMulAdd", "fpMulAdd", "-cOp1, cOp2, -cOp3" ) buildTernaryFpOp("Vfnms", "FpRegRegRegOp", "SimdFloatMultAccOp", "fpMulAdd", "fpMulAdd", " cOp1, cOp2, -cOp3" ) def buildBinFpOp(name, Name, base, opClass, singleOp, doubleOp): global header_output, decoder_output, exec_output code = singleCode % { "op": singleBinOp } code = code % { "func": singleOp } sIop = InstObjParams(name + "s", Name + "S", base, { "code": code, "predicate_test": predicateTest, "op_class": opClass }, []) code = doubleCode % { "op": doubleBinOp } code = code % { "func": doubleOp } dIop = InstObjParams(name + "d", Name + "D", base, { "code": code, "predicate_test": predicateTest, "op_class": opClass }, []) declareTempl = eval(base + "Declare"); constructorTempl = eval(base + "Constructor"); for iop in sIop, dIop: header_output += declareTempl.subst(iop) decoder_output += constructorTempl.subst(iop) exec_output += PredOpExecute.subst(iop) buildBinFpOp("vadd", "Vadd", "FpRegRegRegOp", "SimdFloatAddOp", "fpAddS", "fpAddD") buildBinFpOp("vsub", "Vsub", "FpRegRegRegOp", "SimdFloatAddOp", "fpSubS", "fpSubD") buildBinFpOp("vdiv", "Vdiv", "FpRegRegRegOp", "SimdFloatDivOp", "fpDivS", "fpDivD") buildBinFpOp("vmul", "Vmul", "FpRegRegRegOp", "SimdFloatMultOp", "fpMulS", "fpMulD") def buildUnaryFpOp(name, Name, base, opClass, singleOp, doubleOp = None): if doubleOp is None: doubleOp = singleOp global header_output, decoder_output, exec_output code = singleCode % { "op": singleUnaryOp } code = code % { "func": singleOp } sIop = InstObjParams(name + "s", Name + "S", base, { "code": code, "predicate_test": predicateTest, "op_class": opClass }, []) code = doubleCode % { "op": doubleUnaryOp } code = code % { "func": doubleOp } dIop = InstObjParams(name + "d", Name + "D", base, { "code": code, "predicate_test": predicateTest, "op_class": opClass }, []) declareTempl = eval(base + "Declare"); constructorTempl = eval(base + "Constructor"); for iop in sIop, dIop: header_output += declareTempl.subst(iop) decoder_output += constructorTempl.subst(iop) exec_output += PredOpExecute.subst(iop) buildUnaryFpOp("vsqrt", "Vsqrt", "FpRegRegOp", "SimdFloatSqrtOp", "sqrtf", "sqrt") def buildSimpleUnaryFpOp(name, Name, base, opClass, singleOp, doubleOp = None): if doubleOp is None: doubleOp = singleOp global header_output, decoder_output, exec_output sIop = InstObjParams(name + "s", Name + "S", base, { "code": singleSimpleCode % { "op": singleOp }, "predicate_test": predicateTest, "op_class": opClass }, []) dIop = InstObjParams(name + "d", Name + "D", base, { "code": doubleCode % { "op": doubleOp }, "predicate_test": predicateTest, "op_class": opClass }, []) declareTempl = eval(base + "Declare"); constructorTempl = eval(base + "Constructor"); for iop in sIop, dIop: header_output += declareTempl.subst(iop) decoder_output += constructorTempl.subst(iop) exec_output += PredOpExecute.subst(iop) buildSimpleUnaryFpOp("vneg", "Vneg", "FpRegRegOp", "SimdFloatMiscOp", "-FpOp1", "-dbl(FpOp1P0_uw, FpOp1P1_uw)") buildSimpleUnaryFpOp("vabs", "Vabs", "FpRegRegOp", "SimdFloatMiscOp", "fabsf(FpOp1)", "fabs(dbl(FpOp1P0_uw, FpOp1P1_uw))") buildSimpleUnaryFpOp("vrintp", "VRIntP", "FpRegRegOp", "SimdFloatMiscOp", "fplibRoundInt(FpOp1, FPRounding_POSINF, false, fpscr)", "fplibRoundInt(dbl(FpOp1P0_uw, FpOp1P1_uw), " \ "FPRounding_POSINF, false, fpscr)" ) buildSimpleUnaryFpOp("vrintm", "VRIntM", "FpRegRegOp", "SimdFloatMiscOp", "fplibRoundInt(FpOp1, FPRounding_NEGINF, false, fpscr)", "fplibRoundInt(dbl(FpOp1P0_uw, FpOp1P1_uw), " \ "FPRounding_NEGINF, false, fpscr)" ) buildSimpleUnaryFpOp("vrinta", "VRIntA", "FpRegRegOp", "SimdFloatMiscOp", "fplibRoundInt(FpOp1, FPRounding_TIEAWAY, false, fpscr)", "fplibRoundInt(dbl(FpOp1P0_uw, FpOp1P1_uw), " \ "FPRounding_TIEAWAY, false, fpscr)" ) buildSimpleUnaryFpOp("vrintn", "VRIntN", "FpRegRegOp", "SimdFloatMiscOp", "fplibRoundInt(FpOp1, FPRounding_TIEEVEN, false, fpscr)", "fplibRoundInt(dbl(FpOp1P0_uw, FpOp1P1_uw), " \ "FPRounding_TIEEVEN, false, fpscr)" ) }}; let {{ header_output = "" decoder_output = "" exec_output = "" vmlaSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; float mid = binaryOp(fpscr, FpOp1, FpOp2, fpMulS, fpscr.fz, fpscr.dn, fpscr.rMode); FpDest = binaryOp(fpscr, FpDest, mid, fpAddS, fpscr.fz, fpscr.dn, fpscr.rMode); FpscrExc = fpscr; ''' vmlaSIop = InstObjParams("vmlas", "VmlaS", "FpRegRegRegOp", { "code": vmlaSCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vmlaSIop); decoder_output += FpRegRegRegOpConstructor.subst(vmlaSIop); exec_output += PredOpExecute.subst(vmlaSIop); vmlaDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double mid = binaryOp(fpscr, dbl(FpOp1P0_uw, FpOp1P1_uw), dbl(FpOp2P0_uw, FpOp2P1_uw), fpMulD, fpscr.fz, fpscr.dn, fpscr.rMode); double dest = binaryOp(fpscr, dbl(FpDestP0_uw, FpDestP1_uw), mid, fpAddD, fpscr.fz, fpscr.dn, fpscr.rMode); FpDestP0_uw = dblLow(dest); FpDestP1_uw = dblHi(dest); FpscrExc = fpscr; ''' vmlaDIop = InstObjParams("vmlad", "VmlaD", "FpRegRegRegOp", { "code": vmlaDCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vmlaDIop); decoder_output += FpRegRegRegOpConstructor.subst(vmlaDIop); exec_output += PredOpExecute.subst(vmlaDIop); vmlsSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; float mid = binaryOp(fpscr, FpOp1, FpOp2, fpMulS, fpscr.fz, fpscr.dn, fpscr.rMode); FpDest = binaryOp(fpscr, FpDest, -mid, fpAddS, fpscr.fz, fpscr.dn, fpscr.rMode); FpscrExc = fpscr; ''' vmlsSIop = InstObjParams("vmlss", "VmlsS", "FpRegRegRegOp", { "code": vmlsSCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vmlsSIop); decoder_output += FpRegRegRegOpConstructor.subst(vmlsSIop); exec_output += PredOpExecute.subst(vmlsSIop); vmlsDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double mid = binaryOp(fpscr, dbl(FpOp1P0_uw, FpOp1P1_uw), dbl(FpOp2P0_uw, FpOp2P1_uw), fpMulD, fpscr.fz, fpscr.dn, fpscr.rMode); double dest = binaryOp(fpscr, dbl(FpDestP0_uw, FpDestP1_uw), -mid, fpAddD, fpscr.fz, fpscr.dn, fpscr.rMode); FpDestP0_uw = dblLow(dest); FpDestP1_uw = dblHi(dest); FpscrExc = fpscr; ''' vmlsDIop = InstObjParams("vmlsd", "VmlsD", "FpRegRegRegOp", { "code": vmlsDCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vmlsDIop); decoder_output += FpRegRegRegOpConstructor.subst(vmlsDIop); exec_output += PredOpExecute.subst(vmlsDIop); vnmlaSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; float mid = binaryOp(fpscr, FpOp1, FpOp2, fpMulS, fpscr.fz, fpscr.dn, fpscr.rMode); FpDest = binaryOp(fpscr, -FpDest, -mid, fpAddS, fpscr.fz, fpscr.dn, fpscr.rMode); FpscrExc = fpscr; ''' vnmlaSIop = InstObjParams("vnmlas", "VnmlaS", "FpRegRegRegOp", { "code": vnmlaSCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vnmlaSIop); decoder_output += FpRegRegRegOpConstructor.subst(vnmlaSIop); exec_output += PredOpExecute.subst(vnmlaSIop); vnmlaDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double mid = binaryOp(fpscr, dbl(FpOp1P0_uw, FpOp1P1_uw), dbl(FpOp2P0_uw, FpOp2P1_uw), fpMulD, fpscr.fz, fpscr.dn, fpscr.rMode); double dest = binaryOp(fpscr, -dbl(FpDestP0_uw, FpDestP1_uw), -mid, fpAddD, fpscr.fz, fpscr.dn, fpscr.rMode); FpDestP0_uw = dblLow(dest); FpDestP1_uw = dblHi(dest); FpscrExc = fpscr; ''' vnmlaDIop = InstObjParams("vnmlad", "VnmlaD", "FpRegRegRegOp", { "code": vnmlaDCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vnmlaDIop); decoder_output += FpRegRegRegOpConstructor.subst(vnmlaDIop); exec_output += PredOpExecute.subst(vnmlaDIop); vnmlsSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; float mid = binaryOp(fpscr, FpOp1, FpOp2, fpMulS, fpscr.fz, fpscr.dn, fpscr.rMode); FpDest = binaryOp(fpscr, -FpDest, mid, fpAddS, fpscr.fz, fpscr.dn, fpscr.rMode); FpscrExc = fpscr; ''' vnmlsSIop = InstObjParams("vnmlss", "VnmlsS", "FpRegRegRegOp", { "code": vnmlsSCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vnmlsSIop); decoder_output += FpRegRegRegOpConstructor.subst(vnmlsSIop); exec_output += PredOpExecute.subst(vnmlsSIop); vnmlsDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double mid = binaryOp(fpscr, dbl(FpOp1P0_uw, FpOp1P1_uw), dbl(FpOp2P0_uw, FpOp2P1_uw), fpMulD, fpscr.fz, fpscr.dn, fpscr.rMode); double dest = binaryOp(fpscr, -dbl(FpDestP0_uw, FpDestP1_uw), mid, fpAddD, fpscr.fz, fpscr.dn, fpscr.rMode); FpDestP0_uw = dblLow(dest); FpDestP1_uw = dblHi(dest); FpscrExc = fpscr; ''' vnmlsDIop = InstObjParams("vnmlsd", "VnmlsD", "FpRegRegRegOp", { "code": vnmlsDCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultAccOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vnmlsDIop); decoder_output += FpRegRegRegOpConstructor.subst(vnmlsDIop); exec_output += PredOpExecute.subst(vnmlsDIop); vnmulSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; FpDest = -binaryOp(fpscr, FpOp1, FpOp2, fpMulS, fpscr.fz, fpscr.dn, fpscr.rMode); FpscrExc = fpscr; ''' vnmulSIop = InstObjParams("vnmuls", "VnmulS", "FpRegRegRegOp", { "code": vnmulSCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vnmulSIop); decoder_output += FpRegRegRegOpConstructor.subst(vnmulSIop); exec_output += PredOpExecute.subst(vnmulSIop); vnmulDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double dest = -binaryOp(fpscr, dbl(FpOp1P0_uw, FpOp1P1_uw), dbl(FpOp2P0_uw, FpOp2P1_uw), fpMulD, fpscr.fz, fpscr.dn, fpscr.rMode); FpDestP0_uw = dblLow(dest); FpDestP1_uw = dblHi(dest); FpscrExc = fpscr; ''' vnmulDIop = InstObjParams("vnmuld", "VnmulD", "FpRegRegRegOp", { "code": vnmulDCode, "predicate_test": predicateTest, "op_class": "SimdFloatMultOp" }, []) header_output += FpRegRegRegOpDeclare.subst(vnmulDIop); decoder_output += FpRegRegRegOpConstructor.subst(vnmulDIop); exec_output += PredOpExecute.subst(vnmulDIop); }}; let {{ header_output = "" decoder_output = "" exec_output = "" vcvtUIntFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1_uw) : "m" (FpOp1_uw)); FpDest = FpOp1_uw; __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtUIntFpSIop = InstObjParams("vcvt", "VcvtUIntFpS", "FpRegRegOp", { "code": vcvtUIntFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtUIntFpSIop); decoder_output += FpRegRegOpConstructor.subst(vcvtUIntFpSIop); exec_output += PredOpExecute.subst(vcvtUIntFpSIop); vcvtUIntFpDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1P0_uw) : "m" (FpOp1P0_uw)); double cDest = (uint64_t)FpOp1P0_uw; __asm__ __volatile__("" :: "m" (cDest)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); FpscrExc = fpscr; ''' vcvtUIntFpDIop = InstObjParams("vcvt", "VcvtUIntFpD", "FpRegRegOp", { "code": vcvtUIntFpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtUIntFpDIop); decoder_output += FpRegRegOpConstructor.subst(vcvtUIntFpDIop); exec_output += PredOpExecute.subst(vcvtUIntFpDIop); vcvtSIntFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1_sw) : "m" (FpOp1_sw)); FpDest = FpOp1_sw; __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtSIntFpSIop = InstObjParams("vcvt", "VcvtSIntFpS", "FpRegRegOp", { "code": vcvtSIntFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtSIntFpSIop); decoder_output += FpRegRegOpConstructor.subst(vcvtSIntFpSIop); exec_output += PredOpExecute.subst(vcvtSIntFpSIop); vcvtSIntFpDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1P0_sw) : "m" (FpOp1P0_sw)); double cDest = FpOp1P0_sw; __asm__ __volatile__("" :: "m" (cDest)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); FpscrExc = fpscr; ''' vcvtSIntFpDIop = InstObjParams("vcvt", "VcvtSIntFpD", "FpRegRegOp", { "code": vcvtSIntFpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtSIntFpDIop); decoder_output += FpRegRegOpConstructor.subst(vcvtSIntFpDIop); exec_output += PredOpExecute.subst(vcvtSIntFpDIop); vcvtFpUIntSRCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); vfpFlushToZero(fpscr, FpOp1); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_uw = vfpFpToFixed(FpOp1, false, 32, 0, false); __asm__ __volatile__("" :: "m" (FpDest_uw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpUIntSRIop = InstObjParams("vcvt", "VcvtFpUIntSR", "FpRegRegOp", { "code": vcvtFpUIntSRCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpUIntSRIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpUIntSRIop); exec_output += PredOpExecute.subst(vcvtFpUIntSRIop); vcvtFpUIntDRCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); uint64_t result = vfpFpToFixed(cOp1, false, 32, 0, false); __asm__ __volatile__("" :: "m" (result)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = result; FpscrExc = fpscr; ''' vcvtFpUIntDRIop = InstObjParams("vcvtr", "VcvtFpUIntDR", "FpRegRegOp", { "code": vcvtFpUIntDRCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpUIntDRIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpUIntDRIop); exec_output += PredOpExecute.subst(vcvtFpUIntDRIop); vcvtFpSIntSRCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); vfpFlushToZero(fpscr, FpOp1); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_sw = vfpFpToFixed(FpOp1, true, 32, 0, false); __asm__ __volatile__("" :: "m" (FpDest_sw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpSIntSRIop = InstObjParams("vcvtr", "VcvtFpSIntSR", "FpRegRegOp", { "code": vcvtFpSIntSRCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpSIntSRIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpSIntSRIop); exec_output += PredOpExecute.subst(vcvtFpSIntSRIop); vcvtFpSIntDRCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); int64_t result = vfpFpToFixed(cOp1, true, 32, 0, false); __asm__ __volatile__("" :: "m" (result)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = result; FpscrExc = fpscr; ''' vcvtFpSIntDRIop = InstObjParams("vcvtr", "VcvtFpSIntDR", "FpRegRegOp", { "code": vcvtFpSIntDRCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpSIntDRIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpSIntDRIop); exec_output += PredOpExecute.subst(vcvtFpSIntDRIop); vcvtFpUIntSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); fesetround(FeRoundZero); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_uw = vfpFpToFixed(FpOp1, false, 32, 0); __asm__ __volatile__("" :: "m" (FpDest_uw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpUIntSIop = InstObjParams("vcvt", "VcvtFpUIntS", "FpRegRegOp", { "code": vcvtFpUIntSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpUIntSIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpUIntSIop); exec_output += PredOpExecute.subst(vcvtFpUIntSIop); vcvtFpUIntDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); fesetround(FeRoundZero); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); uint64_t result = vfpFpToFixed(cOp1, false, 32, 0); __asm__ __volatile__("" :: "m" (result)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = result; FpscrExc = fpscr; ''' vcvtFpUIntDIop = InstObjParams("vcvt", "VcvtFpUIntD", "FpRegRegOp", { "code": vcvtFpUIntDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpUIntDIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpUIntDIop); exec_output += PredOpExecute.subst(vcvtFpUIntDIop); vcvtFpSIntSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); fesetround(FeRoundZero); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_sw = vfpFpToFixed(FpOp1, true, 32, 0); __asm__ __volatile__("" :: "m" (FpDest_sw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpSIntSIop = InstObjParams("vcvt", "VcvtFpSIntS", "FpRegRegOp", { "code": vcvtFpSIntSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpSIntSIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpSIntSIop); exec_output += PredOpExecute.subst(vcvtFpSIntSIop); vcvtFpSIntDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); fesetround(FeRoundZero); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); int64_t result = vfpFpToFixed(cOp1, true, 32, 0); __asm__ __volatile__("" :: "m" (result)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = result; FpscrExc = fpscr; ''' vcvtFpSIntDIop = InstObjParams("vcvt", "VcvtFpSIntD", "FpRegRegOp", { "code": vcvtFpSIntDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpSIntDIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpSIntDIop); exec_output += PredOpExecute.subst(vcvtFpSIntDIop); vcvtFpSFpDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); double cDest = fixFpSFpDDest(FpscrExc, FpOp1); __asm__ __volatile__("" :: "m" (cDest)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); FpscrExc = fpscr; ''' vcvtFpSFpDIop = InstObjParams("vcvt", "VcvtFpSFpD", "FpRegRegOp", { "code": vcvtFpSFpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpSFpDIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpSFpDIop); exec_output += PredOpExecute.subst(vcvtFpSFpDIop); vcvtFpDFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); FpDest = fixFpDFpSDest(FpscrExc, cOp1); __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpDFpSIop = InstObjParams("vcvt", "VcvtFpDFpS", "FpRegRegOp", { "code": vcvtFpDFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpDFpSIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpDFpSIop); exec_output += PredOpExecute.subst(vcvtFpDFpSIop); vcvtFpHTFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest = vcvtFpHFpS(fpscr, fpscr.dn, fpscr.ahp, bits(fpToBits(FpOp1), 31, 16)); __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpHTFpSIop = InstObjParams("vcvtt", "VcvtFpHTFpS", "FpRegRegOp", { "code": vcvtFpHTFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpHTFpSIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpHTFpSIop); exec_output += PredOpExecute.subst(vcvtFpHTFpSIop); vcvtFpHBFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest = vcvtFpHFpS(fpscr, fpscr.dn, fpscr.ahp, bits(fpToBits(FpOp1), 15, 0)); __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpHBFpSIop = InstObjParams("vcvtb", "VcvtFpHBFpS", "FpRegRegOp", { "code": vcvtFpHBFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpHBFpSIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpHBFpSIop); exec_output += PredOpExecute.subst(vcvtFpHBFpSIop); vcvtFpSFpHTCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1), "=m" (FpDest_uw) : "m" (FpOp1), "m" (FpDest_uw)); FpDest_uw = insertBits(FpDest_uw, 31, 16,, vcvtFpSFpH(fpscr, fpscr.fz, fpscr.dn, fpscr.rMode, fpscr.ahp, FpOp1)); __asm__ __volatile__("" :: "m" (FpDest_uw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpSFpHTIop = InstObjParams("vcvtt", "VcvtFpSFpHT", "FpRegRegOp", { "code": vcvtFpHTFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpSFpHTIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpSFpHTIop); exec_output += PredOpExecute.subst(vcvtFpSFpHTIop); vcvtFpSFpHBCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1), "=m" (FpDest_uw) : "m" (FpOp1), "m" (FpDest_uw)); FpDest_uw = insertBits(FpDest_uw, 15, 0, vcvtFpSFpH(fpscr, fpscr.fz, fpscr.dn, fpscr.rMode, fpscr.ahp, FpOp1)); __asm__ __volatile__("" :: "m" (FpDest_uw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpSFpHBIop = InstObjParams("vcvtb", "VcvtFpSFpHB", "FpRegRegOp", { "code": vcvtFpSFpHBCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegOpDeclare.subst(vcvtFpSFpHBIop); decoder_output += FpRegRegOpConstructor.subst(vcvtFpSFpHBIop); exec_output += PredOpExecute.subst(vcvtFpSFpHBIop); vcmpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpDest, FpOp1); if (FpDest == FpOp1) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (FpDest < FpOp1) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (FpDest > FpOp1) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { const uint32_t qnan = 0x7fc00000; const bool nan1 = std::isnan(FpDest); const bool signal1 = nan1 && ((fpToBits(FpDest) & qnan) != qnan); const bool nan2 = std::isnan(FpOp1); const bool signal2 = nan2 && ((fpToBits(FpOp1) & qnan) != qnan); if (signal1 || signal2) fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpSIop = InstObjParams("vcmps", "VcmpS", "FpRegRegOp", { "code": vcmpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegRegOpDeclare.subst(vcmpSIop); decoder_output += FpRegRegOpConstructor.subst(vcmpSIop); exec_output += PredOpExecute.subst(vcmpSIop); vcmpDCode = vfpEnabledCheckCode + ''' double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); double cDest = dbl(FpDestP0_uw, FpDestP1_uw); FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, cDest, cOp1); if (cDest == cOp1) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (cDest < cOp1) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (cDest > cOp1) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { const uint64_t qnan = ULL(0x7ff8000000000000); const bool nan1 = std::isnan(cDest); const bool signal1 = nan1 && ((fpToBits(cDest) & qnan) != qnan); const bool nan2 = std::isnan(cOp1); const bool signal2 = nan2 && ((fpToBits(cOp1) & qnan) != qnan); if (signal1 || signal2) fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpDIop = InstObjParams("vcmpd", "VcmpD", "FpRegRegOp", { "code": vcmpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegRegOpDeclare.subst(vcmpDIop); decoder_output += FpRegRegOpConstructor.subst(vcmpDIop); exec_output += PredOpExecute.subst(vcmpDIop); vcmpZeroSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpDest); // This only handles imm == 0 for now. assert(imm == 0); if (FpDest == imm) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (FpDest < imm) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (FpDest > imm) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { const uint32_t qnan = 0x7fc00000; const bool nan = std::isnan(FpDest); const bool signal = nan && ((fpToBits(FpDest) & qnan) != qnan); if (signal) fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpZeroSIop = InstObjParams("vcmpZeros", "VcmpZeroS", "FpRegImmOp", { "code": vcmpZeroSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegImmOpDeclare.subst(vcmpZeroSIop); decoder_output += FpRegImmOpConstructor.subst(vcmpZeroSIop); exec_output += PredOpExecute.subst(vcmpZeroSIop); vcmpZeroDCode = vfpEnabledCheckCode + ''' // This only handles imm == 0 for now. assert(imm == 0); double cDest = dbl(FpDestP0_uw, FpDestP1_uw); FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, cDest); if (cDest == imm) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (cDest < imm) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (cDest > imm) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { const uint64_t qnan = ULL(0x7ff8000000000000); const bool nan = std::isnan(cDest); const bool signal = nan && ((fpToBits(cDest) & qnan) != qnan); if (signal) fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpZeroDIop = InstObjParams("vcmpZerod", "VcmpZeroD", "FpRegImmOp", { "code": vcmpZeroDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegImmOpDeclare.subst(vcmpZeroDIop); decoder_output += FpRegImmOpConstructor.subst(vcmpZeroDIop); exec_output += PredOpExecute.subst(vcmpZeroDIop); vcmpeSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpDest, FpOp1); if (FpDest == FpOp1) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (FpDest < FpOp1) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (FpDest > FpOp1) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpeSIop = InstObjParams("vcmpes", "VcmpeS", "FpRegRegOp", { "code": vcmpeSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegRegOpDeclare.subst(vcmpeSIop); decoder_output += FpRegRegOpConstructor.subst(vcmpeSIop); exec_output += PredOpExecute.subst(vcmpeSIop); vcmpeDCode = vfpEnabledCheckCode + ''' double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); double cDest = dbl(FpDestP0_uw, FpDestP1_uw); FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, cDest, cOp1); if (cDest == cOp1) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (cDest < cOp1) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (cDest > cOp1) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpeDIop = InstObjParams("vcmped", "VcmpeD", "FpRegRegOp", { "code": vcmpeDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegRegOpDeclare.subst(vcmpeDIop); decoder_output += FpRegRegOpConstructor.subst(vcmpeDIop); exec_output += PredOpExecute.subst(vcmpeDIop); vcmpeZeroSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpDest); if (FpDest == imm) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (FpDest < imm) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (FpDest > imm) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpeZeroSIop = InstObjParams("vcmpeZeros", "VcmpeZeroS", "FpRegImmOp", { "code": vcmpeZeroSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegImmOpDeclare.subst(vcmpeZeroSIop); decoder_output += FpRegImmOpConstructor.subst(vcmpeZeroSIop); exec_output += PredOpExecute.subst(vcmpeZeroSIop); vcmpeZeroDCode = vfpEnabledCheckCode + ''' double cDest = dbl(FpDestP0_uw, FpDestP1_uw); FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, cDest); if (cDest == imm) { fpscr.n = 0; fpscr.z = 1; fpscr.c = 1; fpscr.v = 0; } else if (cDest < imm) { fpscr.n = 1; fpscr.z = 0; fpscr.c = 0; fpscr.v = 0; } else if (cDest > imm) { fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 0; } else { fpscr.ioc = 1; fpscr.n = 0; fpscr.z = 0; fpscr.c = 1; fpscr.v = 1; } FpCondCodes = fpscr & FpCondCodesMask; FpscrExc = fpscr; ''' vcmpeZeroDIop = InstObjParams("vcmpeZerod", "VcmpeZeroD", "FpRegImmOp", { "code": vcmpeZeroDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCmpOp" }, []) header_output += FpRegImmOpDeclare.subst(vcmpeZeroDIop); decoder_output += FpRegImmOpConstructor.subst(vcmpeZeroDIop); exec_output += PredOpExecute.subst(vcmpeZeroDIop); }}; let {{ header_output = "" decoder_output = "" exec_output = "" vselSCode = vfpEnabledCheckCode + ''' if (testPredicate(CondCodesNZ, CondCodesC, CondCodesV, cond)) { FpDest = FpOp1; } else { FpDest = FpOp2; } ''' vselSIop = InstObjParams("vsels", "VselS", "FpRegRegRegCondOp", { "code" : vselSCode, "predicate_test" : predicateTest, "op_class" : "SimdFloatCmpOp" }, [] ) header_output += FpRegRegRegCondOpDeclare.subst(vselSIop); decoder_output += FpRegRegRegCondOpConstructor.subst(vselSIop); exec_output += PredOpExecute.subst(vselSIop); vselDCode = vfpEnabledCheckCode + ''' if (testPredicate(CondCodesNZ, CondCodesC, CondCodesV, cond)) { FpDestP0_uw = FpOp1P0_uw; FpDestP1_uw = FpOp1P1_uw; } else { FpDestP0_uw = FpOp2P0_uw; FpDestP1_uw = FpOp2P1_uw; } ''' vselDIop = InstObjParams("vseld", "VselD", "FpRegRegRegCondOp", { "code" : vselDCode, "predicate_test" : predicateTest, "op_class" : "SimdFloatCmpOp" }, [] ) header_output += FpRegRegRegCondOpDeclare.subst(vselDIop); decoder_output += FpRegRegRegCondOpConstructor.subst(vselDIop); exec_output += PredOpExecute.subst(vselDIop); }}; let {{ header_output = "" decoder_output = "" exec_output = "" vcvtFpSFixedSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_sw = vfpFpToFixed(FpOp1, true, 32, imm); __asm__ __volatile__("" :: "m" (FpDest_sw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpSFixedSIop = InstObjParams("vcvt", "VcvtFpSFixedS", "FpRegRegImmOp", { "code": vcvtFpSFixedSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpSFixedSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpSFixedSIop); exec_output += PredOpExecute.subst(vcvtFpSFixedSIop); vcvtFpSFixedDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); uint64_t mid = vfpFpToFixed(cOp1, true, 32, imm); __asm__ __volatile__("" :: "m" (mid)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = mid; FpDestP1_uw = mid >> 32; FpscrExc = fpscr; ''' vcvtFpSFixedDIop = InstObjParams("vcvt", "VcvtFpSFixedD", "FpRegRegImmOp", { "code": vcvtFpSFixedDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpSFixedDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpSFixedDIop); exec_output += PredOpExecute.subst(vcvtFpSFixedDIop); vcvtFpUFixedSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_uw = vfpFpToFixed(FpOp1, false, 32, imm); __asm__ __volatile__("" :: "m" (FpDest_uw)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpUFixedSIop = InstObjParams("vcvt", "VcvtFpUFixedS", "FpRegRegImmOp", { "code": vcvtFpUFixedSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpUFixedSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpUFixedSIop); exec_output += PredOpExecute.subst(vcvtFpUFixedSIop); vcvtFpUFixedDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); uint64_t mid = vfpFpToFixed(cOp1, false, 32, imm); __asm__ __volatile__("" :: "m" (mid)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = mid; FpDestP1_uw = mid >> 32; FpscrExc = fpscr; ''' vcvtFpUFixedDIop = InstObjParams("vcvt", "VcvtFpUFixedD", "FpRegRegImmOp", { "code": vcvtFpUFixedDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpUFixedDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpUFixedDIop); exec_output += PredOpExecute.subst(vcvtFpUFixedDIop); vcvtSFixedFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1_sw) : "m" (FpOp1_sw)); FpDest = vfpSFixedToFpS(fpscr.fz, fpscr.dn, FpOp1_sw, 32, imm); __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtSFixedFpSIop = InstObjParams("vcvt", "VcvtSFixedFpS", "FpRegRegImmOp", { "code": vcvtSFixedFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtSFixedFpSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtSFixedFpSIop); exec_output += PredOpExecute.subst(vcvtSFixedFpSIop); vcvtSFixedFpDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; uint64_t mid = ((uint64_t)FpOp1P0_uw | ((uint64_t)FpOp1P1_uw << 32)); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (mid) : "m" (mid)); double cDest = vfpSFixedToFpD(fpscr.fz, fpscr.dn, mid, 32, imm); __asm__ __volatile__("" :: "m" (cDest)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); FpscrExc = fpscr; ''' vcvtSFixedFpDIop = InstObjParams("vcvt", "VcvtSFixedFpD", "FpRegRegImmOp", { "code": vcvtSFixedFpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtSFixedFpDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtSFixedFpDIop); exec_output += PredOpExecute.subst(vcvtSFixedFpDIop); vcvtUFixedFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1_uw) : "m" (FpOp1_uw)); FpDest = vfpUFixedToFpS(fpscr.fz, fpscr.dn, FpOp1_uw, 32, imm); __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtUFixedFpSIop = InstObjParams("vcvt", "VcvtUFixedFpS", "FpRegRegImmOp", { "code": vcvtUFixedFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtUFixedFpSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtUFixedFpSIop); exec_output += PredOpExecute.subst(vcvtUFixedFpSIop); vcvtUFixedFpDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; uint64_t mid = ((uint64_t)FpOp1P0_uw | ((uint64_t)FpOp1P1_uw << 32)); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (mid) : "m" (mid)); double cDest = vfpUFixedToFpD(fpscr.fz, fpscr.dn, mid, 32, imm); __asm__ __volatile__("" :: "m" (cDest)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); FpscrExc = fpscr; ''' vcvtUFixedFpDIop = InstObjParams("vcvt", "VcvtUFixedFpD", "FpRegRegImmOp", { "code": vcvtUFixedFpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtUFixedFpDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtUFixedFpDIop); exec_output += PredOpExecute.subst(vcvtUFixedFpDIop); vcvtFpSHFixedSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_sh = vfpFpToFixed(FpOp1, true, 16, imm); __asm__ __volatile__("" :: "m" (FpDest_sh)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpSHFixedSIop = InstObjParams("vcvt", "VcvtFpSHFixedS", "FpRegRegImmOp", { "code": vcvtFpSHFixedSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpSHFixedSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpSHFixedSIop); exec_output += PredOpExecute.subst(vcvtFpSHFixedSIop); vcvtFpSHFixedDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); uint64_t result = vfpFpToFixed(cOp1, true, 16, imm); __asm__ __volatile__("" :: "m" (result)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = result; FpDestP1_uw = result >> 32; FpscrExc = fpscr; ''' vcvtFpSHFixedDIop = InstObjParams("vcvt", "VcvtFpSHFixedD", "FpRegRegImmOp", { "code": vcvtFpSHFixedDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpSHFixedDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpSHFixedDIop); exec_output += PredOpExecute.subst(vcvtFpSHFixedDIop); vcvtFpUHFixedSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; vfpFlushToZero(fpscr, FpOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1) : "m" (FpOp1)); FpDest_uh = vfpFpToFixed(FpOp1, false, 16, imm); __asm__ __volatile__("" :: "m" (FpDest_uh)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtFpUHFixedSIop = InstObjParams("vcvt", "VcvtFpUHFixedS", "FpRegRegImmOp", { "code": vcvtFpUHFixedSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpUHFixedSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpUHFixedSIop); exec_output += PredOpExecute.subst(vcvtFpUHFixedSIop); vcvtFpUHFixedDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; double cOp1 = dbl(FpOp1P0_uw, FpOp1P1_uw); vfpFlushToZero(fpscr, cOp1); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (cOp1) : "m" (cOp1)); uint64_t mid = vfpFpToFixed(cOp1, false, 16, imm); __asm__ __volatile__("" :: "m" (mid)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = mid; FpDestP1_uw = mid >> 32; FpscrExc = fpscr; ''' vcvtFpUHFixedDIop = InstObjParams("vcvt", "VcvtFpUHFixedD", "FpRegRegImmOp", { "code": vcvtFpUHFixedDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtFpUHFixedDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtFpUHFixedDIop); exec_output += PredOpExecute.subst(vcvtFpUHFixedDIop); vcvtSHFixedFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1_sh) : "m" (FpOp1_sh)); FpDest = vfpSFixedToFpS(fpscr.fz, fpscr.dn, FpOp1_sh, 16, imm); __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtSHFixedFpSIop = InstObjParams("vcvt", "VcvtSHFixedFpS", "FpRegRegImmOp", { "code": vcvtSHFixedFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtSHFixedFpSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtSHFixedFpSIop); exec_output += PredOpExecute.subst(vcvtSHFixedFpSIop); vcvtSHFixedFpDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; uint64_t mid = ((uint64_t)FpOp1P0_uw | ((uint64_t)FpOp1P1_uw << 32)); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (mid) : "m" (mid)); double cDest = vfpSFixedToFpD(fpscr.fz, fpscr.dn, mid, 16, imm); __asm__ __volatile__("" :: "m" (cDest)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); FpscrExc = fpscr; ''' vcvtSHFixedFpDIop = InstObjParams("vcvt", "VcvtSHFixedFpD", "FpRegRegImmOp", { "code": vcvtSHFixedFpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtSHFixedFpDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtSHFixedFpDIop); exec_output += PredOpExecute.subst(vcvtSHFixedFpDIop); vcvtUHFixedFpSCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (FpOp1_uh) : "m" (FpOp1_uh)); FpDest = vfpUFixedToFpS(fpscr.fz, fpscr.dn, FpOp1_uh, 16, imm); __asm__ __volatile__("" :: "m" (FpDest)); finishVfp(fpscr, state, fpscr.fz); FpscrExc = fpscr; ''' vcvtUHFixedFpSIop = InstObjParams("vcvt", "VcvtUHFixedFpS", "FpRegRegImmOp", { "code": vcvtUHFixedFpSCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtUHFixedFpSIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtUHFixedFpSIop); exec_output += PredOpExecute.subst(vcvtUHFixedFpSIop); vcvtUHFixedFpDCode = vfpEnabledCheckCode + ''' FPSCR fpscr = (FPSCR) FpscrExc; uint64_t mid = ((uint64_t)FpOp1P0_uw | ((uint64_t)FpOp1P1_uw << 32)); VfpSavedState state = prepFpState(fpscr.rMode); __asm__ __volatile__("" : "=m" (mid) : "m" (mid)); double cDest = vfpUFixedToFpD(fpscr.fz, fpscr.dn, mid, 16, imm); __asm__ __volatile__("" :: "m" (cDest)); finishVfp(fpscr, state, fpscr.fz); FpDestP0_uw = dblLow(cDest); FpDestP1_uw = dblHi(cDest); FpscrExc = fpscr; ''' vcvtUHFixedFpDIop = InstObjParams("vcvt", "VcvtUHFixedFpD", "FpRegRegImmOp", { "code": vcvtUHFixedFpDCode, "predicate_test": predicateTest, "op_class": "SimdFloatCvtOp" }, []) header_output += FpRegRegImmOpDeclare.subst(vcvtUHFixedFpDIop); decoder_output += FpRegRegImmOpConstructor.subst(vcvtUHFixedFpDIop); exec_output += PredOpExecute.subst(vcvtUHFixedFpDIop); }};