// -*- mode:c++ -*-
// Copyright (c) 2010 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder.  You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Copyright (c) 2007-2008 The Florida State University
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Stephen Hines

def operand_types {{
    'sb' : ('signed int', 8),
    'ub' : ('unsigned int', 8),
    'sh' : ('signed int', 16),
    'uh' : ('unsigned int', 16),
    'sw' : ('signed int', 32),
    'uw' : ('unsigned int', 32),
    'ud' : ('unsigned int', 64),
    'tud' : ('twin64 int', 64),
    'sf' : ('float', 32),
    'df' : ('float', 64)
}};

let {{
    maybePCRead = '''
        ((%(reg_idx)s == PCReg) ? readPC(xc) : xc->%(func)s(this, %(op_idx)s))
    '''
    maybeAlignedPCRead = '''
        ((%(reg_idx)s == PCReg) ? (roundDown(readPC(xc), 4)) :
         xc->%(func)s(this, %(op_idx)s))
    '''
    maybePCWrite = '''
        ((%(reg_idx)s == PCReg) ? setNextPC(xc, %(final_val)s) :
         xc->%(func)s(this, %(op_idx)s, %(final_val)s))
    '''
    maybeIWPCWrite = '''
        ((%(reg_idx)s == PCReg) ? setIWNextPC(xc, %(final_val)s) :
         xc->%(func)s(this, %(op_idx)s, %(final_val)s))
    '''
    maybeAIWPCWrite = '''
        if (%(reg_idx)s == PCReg) {
            bool thumb = THUMB;
            if (thumb) {
                setNextPC(xc, %(final_val)s);
            } else {
                setIWNextPC(xc, %(final_val)s);
            }
        } else {
            xc->%(func)s(this, %(op_idx)s, %(final_val)s);
        }
    '''

    #PCState operands need to have a sorting index (the number at the end)
    #less than all the integer registers which might update the PC. That way
    #if the flag bits of the pc state are updated and a branch happens through
    #R15, the updates are layered properly and the R15 update isn't lost.
    srtNormal = 5
    srtCpsr = 4
    srtBase = 3
    srtPC = 2
    srtMode = 1
    srtEPC = 0

    def floatReg(idx):
        return ('FloatReg', 'sf', idx, 'IsFloating', srtNormal)

    def intReg(idx):
        return ('IntReg', 'uw', idx, 'IsInteger', srtNormal,
                maybePCRead, maybePCWrite)

    def intRegNPC(idx):
        return ('IntReg', 'uw', idx, 'IsInteger', srtNormal)

    def intRegAPC(idx, id = srtNormal):
        return ('IntReg', 'uw', idx, 'IsInteger', id,
                maybeAlignedPCRead, maybePCWrite)

    def intRegIWPC(idx):
        return ('IntReg', 'uw', idx, 'IsInteger', srtNormal,
                maybePCRead, maybeIWPCWrite)

    def intRegAIWPC(idx):
        return ('IntReg', 'uw', idx, 'IsInteger', srtNormal,
                maybePCRead, maybeAIWPCWrite)

    def intRegCC(idx):
        return ('IntReg', 'uw', idx, None, srtNormal)

    def cntrlReg(idx, id = srtNormal, type = 'uw'):
        return ('ControlReg', type, idx, (None, None, 'IsControl'), id)

    def cntrlRegNC(idx, id = srtNormal, type = 'uw'):
        return ('ControlReg', type, idx, None, id)

    def pcStateReg(idx, id):
        return ('PCState', 'uw', idx, (None, None, 'IsControl'), id)
}};

def operands {{
    #Abstracted integer reg operands
    'Dest': intReg('dest'),
    'IWDest': intRegIWPC('dest'),
    'AIWDest': intRegAIWPC('dest'),
    'Dest2': intReg('dest2'),
    'Result': intReg('result'),
    'Base': intRegAPC('base', id = srtBase),
    'Index': intReg('index'),
    'Shift': intReg('shift'),
    'Op1': intReg('op1'),
    'Op2': intReg('op2'),
    'Op3': intReg('op3'),
    'Reg0': intReg('reg0'),
    'Reg1': intReg('reg1'),
    'Reg2': intReg('reg2'),
    'Reg3': intReg('reg3'),

    #Fixed index integer reg operands
    'SpMode': intRegNPC('intRegInMode((OperatingMode)regMode, INTREG_SP)'),
    'LR': intRegNPC('INTREG_LR'),
    'R7': intRegNPC('7'),
    # First four arguments are passed in registers
    'R0': intRegNPC('0'),
    'R1': intRegNPC('1'),
    'R2': intRegNPC('2'),
    'R3': intRegNPC('3'),

    #Pseudo integer condition code registers
    'CondCodes': intRegCC('INTREG_CONDCODES'),
    'OptCondCodes': intRegCC(
            '''(condCode == COND_AL || condCode == COND_UC) ?
               INTREG_ZERO : INTREG_CONDCODES'''),
    'FpCondCodes': intRegCC('INTREG_FPCONDCODES'),

    #Abstracted floating point reg operands
    'FpDest': floatReg('(dest + 0)'),
    'FpDestP0': floatReg('(dest + 0)'),
    'FpDestP1': floatReg('(dest + 1)'),
    'FpDestP2': floatReg('(dest + 2)'),
    'FpDestP3': floatReg('(dest + 3)'),
    'FpDestP4': floatReg('(dest + 4)'),
    'FpDestP5': floatReg('(dest + 5)'),
    'FpDestP6': floatReg('(dest + 6)'),
    'FpDestP7': floatReg('(dest + 7)'),
    'FpDestS0P0': floatReg('(dest + step * 0 + 0)'),
    'FpDestS0P1': floatReg('(dest + step * 0 + 1)'),
    'FpDestS1P0': floatReg('(dest + step * 1 + 0)'),
    'FpDestS1P1': floatReg('(dest + step * 1 + 1)'),
    'FpDestS2P0': floatReg('(dest + step * 2 + 0)'),
    'FpDestS2P1': floatReg('(dest + step * 2 + 1)'),
    'FpDestS3P0': floatReg('(dest + step * 3 + 0)'),
    'FpDestS3P1': floatReg('(dest + step * 3 + 1)'),

    'FpDest2': floatReg('(dest2 + 0)'),
    'FpDest2P0': floatReg('(dest2 + 0)'),
    'FpDest2P1': floatReg('(dest2 + 1)'),
    'FpDest2P2': floatReg('(dest2 + 2)'),
    'FpDest2P3': floatReg('(dest2 + 3)'),

    'FpOp1': floatReg('(op1 + 0)'),
    'FpOp1P0': floatReg('(op1 + 0)'),
    'FpOp1P1': floatReg('(op1 + 1)'),
    'FpOp1P2': floatReg('(op1 + 2)'),
    'FpOp1P3': floatReg('(op1 + 3)'),
    'FpOp1P4': floatReg('(op1 + 4)'),
    'FpOp1P5': floatReg('(op1 + 5)'),
    'FpOp1P6': floatReg('(op1 + 6)'),
    'FpOp1P7': floatReg('(op1 + 7)'),
    'FpOp1S0P0': floatReg('(op1 + step * 0 + 0)'),
    'FpOp1S0P1': floatReg('(op1 + step * 0 + 1)'),
    'FpOp1S1P0': floatReg('(op1 + step * 1 + 0)'),
    'FpOp1S1P1': floatReg('(op1 + step * 1 + 1)'),
    'FpOp1S2P0': floatReg('(op1 + step * 2 + 0)'),
    'FpOp1S2P1': floatReg('(op1 + step * 2 + 1)'),
    'FpOp1S3P0': floatReg('(op1 + step * 3 + 0)'),
    'FpOp1S3P1': floatReg('(op1 + step * 3 + 1)'),

    'FpOp2': floatReg('(op2 + 0)'),
    'FpOp2P0': floatReg('(op2 + 0)'),
    'FpOp2P1': floatReg('(op2 + 1)'),
    'FpOp2P2': floatReg('(op2 + 2)'),
    'FpOp2P3': floatReg('(op2 + 3)'),

    #Abstracted control reg operands
    'MiscDest': cntrlReg('dest'),
    'MiscOp1': cntrlReg('op1'),

    #Fixed index control regs
    'Cpsr': cntrlReg('MISCREG_CPSR', srtCpsr),
    'Spsr': cntrlRegNC('MISCREG_SPSR'),
    'Fpsr': cntrlRegNC('MISCREG_FPSR'),
    'Fpsid': cntrlRegNC('MISCREG_FPSID'),
    'Fpscr': cntrlRegNC('MISCREG_FPSCR'),
    'FpscrQc': cntrlRegNC('MISCREG_FPSCR_QC'),
    'FpscrExc': cntrlRegNC('MISCREG_FPSCR_EXC'),
    'Cpacr': cntrlReg('MISCREG_CPACR'),
    'Fpexc': cntrlRegNC('MISCREG_FPEXC'),
    'Sctlr': cntrlRegNC('MISCREG_SCTLR'),
    'SevMailbox': cntrlRegNC('MISCREG_SEV_MAILBOX'),
    'LLSCLock': cntrlRegNC('MISCREG_LOCKFLAG'),

    #Register fields for microops
    'URa' : intReg('ura'),
    'IWRa' : intRegIWPC('ura'),
    'Fa' : floatReg('ura'),
    'URb' : intReg('urb'),
    'URc' : intReg('urc'),

    #Memory Operand
    'Mem': ('Mem', 'uw', None, ('IsMemRef', 'IsLoad', 'IsStore'), srtNormal),

    #PCState fields
    'PC': pcStateReg('instPC', srtPC),
    'NPC': pcStateReg('instNPC', srtPC),
    'pNPC': pcStateReg('instNPC', srtEPC),
    'IWNPC': pcStateReg('instIWNPC', srtPC),
    'Thumb': pcStateReg('thumb', srtPC),
    'NextThumb': pcStateReg('nextThumb', srtMode),
    'NextJazelle': pcStateReg('nextJazelle', srtMode),
    'NextItState': pcStateReg('nextItstate', srtMode),
    'Itstate': pcStateReg('itstate', srtMode),

    #Register operands depending on a field in the instruction encoding. These
    #should be avoided since they may not be portable across different
    #encodings of the same instruction.
    'Rd': intReg('RD'),
    'Rm': intReg('RM'),
    'Rs': intReg('RS'),
    'Rn': intReg('RN'),
    'Rt': intReg('RT')
}};