/* * Copyright (c) 2012 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Andreas Sandberg */ #include "arch/arm/kvm/arm_cpu.hh" #include #include #include #include #include "arch/registers.hh" #include "cpu/kvm/base.hh" #include "debug/Kvm.hh" #include "debug/KvmContext.hh" #include "debug/KvmInt.hh" #include "sim/pseudo_inst.hh" using namespace ArmISA; #define EXTRACT_FIELD(val, mask, shift) \ (((val) & (mask)) >> (shift)) #define REG_IS_ARM(id) \ (((id) & KVM_REG_ARCH_MASK) == KVM_REG_ARM) #define REG_IS_32BIT(id) \ (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) #define REG_IS_64BIT(id) \ (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) #define REG_IS_CP(id, cp) \ (((id) & KVM_REG_ARM_COPROC_MASK) == (cp)) #define REG_IS_CORE(id) REG_IS_CP((id), KVM_REG_ARM_CORE) #define REG_IS_VFP(id) REG_IS_CP((id), KVM_REG_ARM_VFP) #define REG_VFP_REG(id) ((id) & KVM_REG_ARM_VFP_MASK) // HACK: These aren't really defined in any of the headers, so we'll // assume some reasonable values for now. #define REG_IS_VFP_REG(id) (REG_VFP_REG(id) < 0x100) #define REG_IS_VFP_CTRL(id) (REG_VFP_REG(id) >= 0x100) #define REG_IS_DEMUX(id) REG_IS_CP((id), KVM_REG_ARM_DEMUX) // There is no constant in the kernel headers defining the mask to use // to get the core register index. We'll just do what they do // internally. #define REG_CORE_IDX(id) \ (~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE)) #define REG_CP(id) \ EXTRACT_FIELD(id, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_COPROC_SHIFT) #define REG_CRN(id) \ EXTRACT_FIELD(id, KVM_REG_ARM_32_CRN_MASK, KVM_REG_ARM_32_CRN_SHIFT) #define REG_OPC1(id) \ EXTRACT_FIELD(id, KVM_REG_ARM_OPC1_MASK, KVM_REG_ARM_OPC1_SHIFT) #define REG_CRM(id) \ EXTRACT_FIELD(id, KVM_REG_ARM_CRM_MASK, KVM_REG_ARM_CRM_SHIFT) #define REG_OPC2(id) \ EXTRACT_FIELD(id, KVM_REG_ARM_32_OPC2_MASK, KVM_REG_ARM_32_OPC2_SHIFT) #define REG_CP32(cpnum, crn, opc1, crm, opc2) ( \ (KVM_REG_ARM | KVM_REG_SIZE_U32) | \ ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \ ((crn) << KVM_REG_ARM_32_CRN_SHIFT) | \ ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \ ((crm) << KVM_REG_ARM_CRM_SHIFT) | \ ((opc2) << KVM_REG_ARM_32_OPC2_SHIFT)) #define REG_CP64(cpnum, opc1, crm) ( \ (KVM_REG_ARM | KVM_REG_SIZE_U64) | \ ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \ ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \ ((crm) << KVM_REG_ARM_CRM_SHIFT)) #define REG_CORE32(kname) ( \ (KVM_REG_ARM | KVM_REG_SIZE_U32) | \ (KVM_REG_ARM_CORE) | \ (KVM_REG_ARM_CORE_REG(kname))) #define REG_VFP32(regno) ( \ (KVM_REG_ARM | KVM_REG_SIZE_U32) | \ KVM_REG_ARM_VFP | (regno)) #define REG_VFP64(regno) ( \ (KVM_REG_ARM | KVM_REG_SIZE_U64) | \ KVM_REG_ARM_VFP | (regno)) #define REG_DEMUX32(dmxid, val) ( \ (KVM_REG_ARM | KVM_REG_SIZE_U32) | \ (dmxid) | (val)) // Some of the co-processor registers are invariants and must have the // same value on both the host and the guest. We need to keep a list // of these to prevent gem5 from fiddling with them on the guest. static uint64_t invariant_reg_vector[] = { REG_CP32(15, 0, 0, 0, 0), // MIDR REG_CP32(15, 0, 0, 0, 1), // CTR REG_CP32(15, 0, 0, 0, 2), // TCMTR REG_CP32(15, 0, 0, 0, 3), // TLBTR REG_CP32(15, 0, 0, 0, 6), // REVIDR REG_CP32(15, 0, 0, 1, 0), // ID_PFR0 REG_CP32(15, 0, 0, 1, 1), // ID_PFR1 REG_CP32(15, 0, 0, 1, 2), // ID_DFR0 REG_CP32(15, 0, 0, 1, 3), // ID_AFR0 REG_CP32(15, 0, 0, 1, 4), // ID_MMFR0 REG_CP32(15, 0, 0, 1, 5), // ID_MMFR1 REG_CP32(15, 0, 0, 1, 6), // ID_MMFR2 REG_CP32(15, 0, 0, 1, 7), // ID_MMFR3 REG_CP32(15, 0, 0, 2, 0), // ID_ISAR0 REG_CP32(15, 0, 0, 2, 1), // ID_ISAR1 REG_CP32(15, 0, 0, 2, 2), // ID_ISAR2 REG_CP32(15, 0, 0, 2, 3), // ID_ISAR3 REG_CP32(15, 0, 0, 2, 4), // ID_ISAR4 REG_CP32(15, 0, 0, 2, 5), // ID_ISAR5 REG_CP32(15, 0, 1, 0, 0), // CSSIDR REG_CP32(15, 0, 1, 0, 1), // CLIDR REG_CP32(15, 0, 1, 0, 7), // AIDR REG_VFP32(KVM_REG_ARM_VFP_MVFR0), REG_VFP32(KVM_REG_ARM_VFP_MVFR1), REG_VFP32(KVM_REG_ARM_VFP_FPSID), REG_DEMUX32(KVM_REG_ARM_DEMUX_ID_CCSIDR, 0), }; const static uint64_t KVM_REG64_TTBR0(REG_CP64(15, 0, 2)); const static uint64_t KVM_REG64_TTBR1(REG_CP64(15, 1, 2)); #define INTERRUPT_ID(type, vcpu, irq) ( \ ((type) << KVM_ARM_IRQ_TYPE_SHIFT) | \ ((vcpu) << KVM_ARM_IRQ_VCPU_SHIFT) | \ ((irq) << KVM_ARM_IRQ_NUM_SHIFT)) #define INTERRUPT_VCPU_IRQ(vcpu) \ INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ) #define INTERRUPT_VCPU_FIQ(vcpu) \ INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ) #define COUNT_OF(l) (sizeof(l) / sizeof(*l)) const std::set ArmKvmCPU::invariant_regs( invariant_reg_vector, invariant_reg_vector + COUNT_OF(invariant_reg_vector)); ArmKvmCPU::KvmIntRegInfo ArmKvmCPU::kvmIntRegs[] = { { REG_CORE32(usr_regs.ARM_r0), INTREG_R0, "R0" }, { REG_CORE32(usr_regs.ARM_r1), INTREG_R1, "R1" }, { REG_CORE32(usr_regs.ARM_r2), INTREG_R2, "R2" }, { REG_CORE32(usr_regs.ARM_r3), INTREG_R3, "R3" }, { REG_CORE32(usr_regs.ARM_r4), INTREG_R4, "R4" }, { REG_CORE32(usr_regs.ARM_r5), INTREG_R5, "R5" }, { REG_CORE32(usr_regs.ARM_r6), INTREG_R6, "R6" }, { REG_CORE32(usr_regs.ARM_r7), INTREG_R7, "R7" }, { REG_CORE32(usr_regs.ARM_r8), INTREG_R8, "R8" }, { REG_CORE32(usr_regs.ARM_r9), INTREG_R9, "R9" }, { REG_CORE32(usr_regs.ARM_r10), INTREG_R10, "R10" }, { REG_CORE32(usr_regs.ARM_fp), INTREG_R11, "R11" }, { REG_CORE32(usr_regs.ARM_ip), INTREG_R12, "R12" }, { REG_CORE32(usr_regs.ARM_sp), INTREG_R13, "R13(USR)" }, { REG_CORE32(usr_regs.ARM_lr), INTREG_R14, "R14(USR)" }, { REG_CORE32(svc_regs[0]), INTREG_SP_SVC, "R13(SVC)" }, { REG_CORE32(svc_regs[1]), INTREG_LR_SVC, "R14(SVC)" }, { REG_CORE32(abt_regs[0]), INTREG_SP_ABT, "R13(ABT)" }, { REG_CORE32(abt_regs[1]), INTREG_LR_ABT, "R14(ABT)" }, { REG_CORE32(und_regs[0]), INTREG_SP_UND, "R13(UND)" }, { REG_CORE32(und_regs[1]), INTREG_LR_UND, "R14(UND)" }, { REG_CORE32(irq_regs[0]), INTREG_SP_IRQ, "R13(IRQ)" }, { REG_CORE32(irq_regs[1]), INTREG_LR_IRQ, "R14(IRQ)" }, { REG_CORE32(fiq_regs[0]), INTREG_R8_FIQ, "R8(FIQ)" }, { REG_CORE32(fiq_regs[1]), INTREG_R9_FIQ, "R9(FIQ)" }, { REG_CORE32(fiq_regs[2]), INTREG_R10_FIQ, "R10(FIQ)" }, { REG_CORE32(fiq_regs[3]), INTREG_R11_FIQ, "R11(FIQ)" }, { REG_CORE32(fiq_regs[4]), INTREG_R12_FIQ, "R12(FIQ)" }, { REG_CORE32(fiq_regs[5]), INTREG_R13_FIQ, "R13(FIQ)" }, { REG_CORE32(fiq_regs[6]), INTREG_R14_FIQ, "R14(FIQ)" }, { 0, NUM_INTREGS, NULL } }; ArmKvmCPU::KvmCoreMiscRegInfo ArmKvmCPU::kvmCoreMiscRegs[] = { { REG_CORE32(usr_regs.ARM_cpsr), MISCREG_CPSR, "CPSR" }, { REG_CORE32(svc_regs[2]), MISCREG_SPSR_SVC, "SPSR(SVC)" }, { REG_CORE32(abt_regs[2]), MISCREG_SPSR_ABT, "SPSR(ABT)" }, { REG_CORE32(und_regs[2]), MISCREG_SPSR_UND, "SPSR(UND)" }, { REG_CORE32(irq_regs[2]), MISCREG_SPSR_IRQ, "SPSR(IRQ)" }, { REG_CORE32(fiq_regs[2]), MISCREG_SPSR_FIQ, "SPSR(FIQ)" }, { 0, NUM_MISCREGS } }; ArmKvmCPU::ArmKvmCPU(ArmKvmCPUParams *params) : BaseKvmCPU(params), irqAsserted(false), fiqAsserted(false) { } ArmKvmCPU::~ArmKvmCPU() { } void ArmKvmCPU::startup() { BaseKvmCPU::startup(); /* TODO: This needs to be moved when we start to support VMs with * multiple threads since kvmArmVCpuInit requires that all CPUs in * the VM have been created. */ /* TODO: The CPU type needs to be configurable once KVM on ARM * starts to support more CPUs. */ kvmArmVCpuInit(KVM_ARM_TARGET_CORTEX_A15); } Tick ArmKvmCPU::kvmRun(Tick ticks) { bool simFIQ(interrupts[0]->checkRaw(INT_FIQ)); bool simIRQ(interrupts[0]->checkRaw(INT_IRQ)); if (fiqAsserted != simFIQ) { fiqAsserted = simFIQ; DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ); vm.setIRQLine(INTERRUPT_VCPU_FIQ(vcpuID), simFIQ); } if (irqAsserted != simIRQ) { irqAsserted = simIRQ; DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ); vm.setIRQLine(INTERRUPT_VCPU_IRQ(vcpuID), simIRQ); } return BaseKvmCPU::kvmRun(ticks); } void ArmKvmCPU::dump() { dumpKvmStateCore(); dumpKvmStateMisc(); } void ArmKvmCPU::updateKvmState() { DPRINTF(KvmContext, "Updating KVM state...\n"); updateKvmStateCore(); updateKvmStateMisc(); } void ArmKvmCPU::updateThreadContext() { DPRINTF(KvmContext, "Updating gem5 state...\n"); updateTCStateCore(); updateTCStateMisc(); } Tick ArmKvmCPU::onKvmExitHypercall() { ThreadContext *tc(getContext(0)); const uint32_t reg_ip(tc->readIntRegFlat(INTREG_R12)); const uint8_t func((reg_ip >> 8) & 0xFF); const uint8_t subfunc(reg_ip & 0xFF); DPRINTF(Kvm, "KVM Hypercall: 0x%x/0x%x\n", func, subfunc); const uint64_t ret(PseudoInst::pseudoInst(getContext(0), func, subfunc)); // Just set the return value using the KVM API instead of messing // with the context. We could have used the context, but that // would have required us to request a full context sync. setOneReg(REG_CORE32(usr_regs.ARM_r0), ret & 0xFFFFFFFF); setOneReg(REG_CORE32(usr_regs.ARM_r1), (ret >> 32) & 0xFFFFFFFF); return 0; } const ArmKvmCPU::RegIndexVector & ArmKvmCPU::getRegList() const { if (_regIndexList.size() == 0) { std::unique_ptr regs; uint64_t i(1); do { i <<= 1; regs.reset((struct kvm_reg_list *) operator new(sizeof(struct kvm_reg_list) + i * sizeof(uint64_t))); regs->n = i; } while (!getRegList(*regs)); _regIndexList.assign(regs->reg, regs->reg + regs->n); } return _regIndexList; } void ArmKvmCPU::kvmArmVCpuInit(uint32_t target) { struct kvm_vcpu_init init; memset(&init, 0, sizeof(init)); init.target = target; kvmArmVCpuInit(init); } void ArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init) { if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1) panic("KVM: Failed to initialize vCPU\n"); } MiscRegIndex ArmKvmCPU::decodeCoProcReg(uint64_t id) const { const unsigned cp(REG_CP(id)); const bool is_reg32(REG_IS_32BIT(id)); const bool is_reg64(REG_IS_64BIT(id)); // CP numbers larger than 15 are reserved for KVM extensions if (cp > 15) return NUM_MISCREGS; const unsigned crm(REG_CRM(id)); const unsigned crn(REG_CRN(id)); const unsigned opc1(REG_OPC1(id)); const unsigned opc2(REG_OPC2(id)); if (is_reg32) { switch (cp) { case 14: return decodeCP14Reg(crn, opc1, crm, opc2); case 15: return decodeCP15Reg(crn, opc1, crm, opc2); default: return NUM_MISCREGS; } } else if (is_reg64) { return NUM_MISCREGS; } else { warn("Unhandled register length, register (0x%x) ignored.\n"); return NUM_MISCREGS; } } ArmISA::MiscRegIndex ArmKvmCPU::decodeVFPCtrlReg(uint64_t id) const { if (!REG_IS_ARM(id) || !REG_IS_VFP(id) || !REG_IS_VFP_CTRL(id)) return NUM_MISCREGS; const unsigned vfp_reg(REG_VFP_REG(id)); switch (vfp_reg) { case KVM_REG_ARM_VFP_FPSID: return MISCREG_FPSID; case KVM_REG_ARM_VFP_FPSCR: return MISCREG_FPSCR; case KVM_REG_ARM_VFP_MVFR0: return MISCREG_MVFR0; case KVM_REG_ARM_VFP_MVFR1: return MISCREG_MVFR1; case KVM_REG_ARM_VFP_FPEXC: return MISCREG_FPEXC; case KVM_REG_ARM_VFP_FPINST: case KVM_REG_ARM_VFP_FPINST2: warn_once("KVM: FPINST not implemented.\n"); return NUM_MISCREGS; default: return NUM_MISCREGS; } } bool ArmKvmCPU::isInvariantReg(uint64_t id) { /* Mask away the value field from multiplexed registers, we assume * that entire groups of multiplexed registers can be treated as * invariant. */ if (REG_IS_ARM(id) && REG_IS_DEMUX(id)) id &= ~KVM_REG_ARM_DEMUX_VAL_MASK; return invariant_regs.find(id) != invariant_regs.end(); } bool ArmKvmCPU::getRegList(struct kvm_reg_list ®s) const { if (ioctl(KVM_GET_REG_LIST, (void *)®s) == -1) { if (errno == E2BIG) { return false; } else { panic("KVM: Failed to get vCPU register list (errno: %i)\n", errno); } } else { return true; } } void ArmKvmCPU::dumpKvmStateCore() { /* Print core registers */ uint32_t pc(getOneRegU32(REG_CORE32(usr_regs.ARM_pc))); inform("PC: 0x%x\n", pc); for (const KvmIntRegInfo *ri(kvmIntRegs); ri->idx != NUM_INTREGS; ++ri) { uint32_t value(getOneRegU32(ri->id)); inform("%s: 0x%x\n", ri->name, value); } for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs); ri->idx != NUM_MISCREGS; ++ri) { uint32_t value(getOneRegU32(ri->id)); inform("%s: 0x%x\n", miscRegName[ri->idx], value); } } void ArmKvmCPU::dumpKvmStateMisc() { /* Print co-processor registers */ const RegIndexVector ®_ids(getRegList());; for (RegIndexVector::const_iterator it(reg_ids.begin()); it != reg_ids.end(); ++it) { uint64_t id(*it); if (REG_IS_ARM(id) && REG_CP(id) <= 15) { dumpKvmStateCoProc(id); } else if (REG_IS_ARM(id) && REG_IS_VFP(id)) { dumpKvmStateVFP(id); } else if (REG_IS_ARM(id) && REG_IS_DEMUX(id)) { switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: inform("CCSIDR [0x%x]: %s\n", EXTRACT_FIELD(id, KVM_REG_ARM_DEMUX_VAL_MASK, KVM_REG_ARM_DEMUX_VAL_SHIFT), getAndFormatOneReg(id)); break; default: inform("DEMUX [0x%x, 0x%x]: %s\n", EXTRACT_FIELD(id, KVM_REG_ARM_DEMUX_ID_MASK, KVM_REG_ARM_DEMUX_ID_SHIFT), EXTRACT_FIELD(id, KVM_REG_ARM_DEMUX_VAL_MASK, KVM_REG_ARM_DEMUX_VAL_SHIFT), getAndFormatOneReg(id)); break; } } else if (!REG_IS_CORE(id)) { inform("0x%x: %s\n", id, getAndFormatOneReg(id)); } } } void ArmKvmCPU::dumpKvmStateCoProc(uint64_t id) { assert(REG_IS_ARM(id)); assert(REG_CP(id) <= 15); if (REG_IS_32BIT(id)) { // 32-bit co-proc registers MiscRegIndex idx(decodeCoProcReg(id)); uint32_t value(getOneRegU32(id)); if (idx != NUM_MISCREGS && !(idx >= MISCREG_CP15_UNIMP_START && idx < MISCREG_CP15_END)) { const char *name(miscRegName[idx]); const unsigned m5_ne(tc->readMiscRegNoEffect(idx)); const unsigned m5_e(tc->readMiscReg(idx)); inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: " "[%s]: 0x%x/0x%x\n", REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id), REG_OPC2(id), isInvariantReg(id), name, value, m5_e); if (m5_e != m5_ne) { inform("readMiscReg: %x, readMiscRegNoEffect: %x\n", m5_e, m5_ne); } } else { const char *name(idx != NUM_MISCREGS ? miscRegName[idx] : "-"); inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: [%s]: " "0x%x\n", REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id), REG_OPC2(id), isInvariantReg(id), name, value); } } else { inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i " "len: 0x%x]: %s\n", REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id), REG_OPC2(id), isInvariantReg(id), EXTRACT_FIELD(id, KVM_REG_SIZE_MASK, KVM_REG_SIZE_SHIFT), getAndFormatOneReg(id)); } } void ArmKvmCPU::dumpKvmStateVFP(uint64_t id) { assert(REG_IS_ARM(id)); assert(REG_IS_VFP(id)); if (REG_IS_VFP_REG(id)) { const unsigned idx(id & KVM_REG_ARM_VFP_MASK); inform("VFP reg %i: %s", idx, getAndFormatOneReg(id)); } else if (REG_IS_VFP_CTRL(id)) { MiscRegIndex idx(decodeVFPCtrlReg(id)); if (idx != NUM_MISCREGS) { inform("VFP [%s]: %s", miscRegName[idx], getAndFormatOneReg(id)); } else { inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id)); } } else { inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id)); } } void ArmKvmCPU::updateKvmStateCore() { for (const KvmIntRegInfo *ri(kvmIntRegs); ri->idx != NUM_INTREGS; ++ri) { uint64_t value(tc->readIntRegFlat(ri->idx)); DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value); setOneReg(ri->id, value); } DPRINTF(KvmContext, "kvm(PC) := 0x%x\n", tc->instAddr()); setOneReg(REG_CORE32(usr_regs.ARM_pc), tc->instAddr()); for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs); ri->idx != NUM_MISCREGS; ++ri) { uint64_t value(tc->readMiscReg(ri->idx)); DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value); setOneReg(ri->id, value); } if (DTRACE(KvmContext)) dumpKvmStateCore(); } void ArmKvmCPU::updateKvmStateMisc() { static bool warned(false); // We can't use warn_once since we want // to show /all/ registers const RegIndexVector ®s(getRegList()); for (RegIndexVector::const_iterator it(regs.begin()); it != regs.end(); ++it) { if (!REG_IS_ARM(*it)) { if (!warned) warn("Skipping non-ARM register: 0x%x\n", *it); } else if (isInvariantReg(*it)) { DPRINTF(Kvm, "Skipping invariant register: 0x%x\n", *it); } else if (REG_IS_CORE(*it)) { // Core registers are handled in updateKvmStateCore continue; } else if (REG_CP(*it) <= 15) { updateKvmStateCoProc(*it, !warned); } else if (REG_IS_VFP(*it)) { updateKvmStateVFP(*it, !warned); } else { if (!warned) { warn("Skipping register with unknown CP (%i) id: 0x%x\n", REG_CP(*it), *it); } } } warned = true; if (DTRACE(KvmContext)) dumpKvmStateMisc(); } void ArmKvmCPU::updateKvmStateCoProc(uint64_t id, bool show_warnings) { MiscRegIndex reg(decodeCoProcReg(id)); assert(REG_IS_ARM(id)); assert(REG_CP(id) <= 15); if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) { // HACK HACK HACK: Workaround for 64-bit TTBRx reg = (id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1); if (show_warnings) hack("KVM: 64-bit TTBBRx workaround\n"); } if (reg == NUM_MISCREGS) { if (show_warnings) { warn("KVM: Ignoring unknown KVM co-processor register (0x%.8x):\n", id); warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i" " opc2: %i]\n", id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id), REG_OPC2(id)); } } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) { if (show_warnings) warn("KVM: Co-processor reg. %s not implemented by gem5.\n", miscRegName[reg]); } else { setOneReg(id, tc->readMiscRegNoEffect(reg)); } } void ArmKvmCPU::updateKvmStateVFP(uint64_t id, bool show_warnings) { assert(REG_IS_ARM(id)); assert(REG_IS_VFP(id)); if (REG_IS_VFP_REG(id)) { if (!REG_IS_64BIT(id)) { if (show_warnings) warn("Unexpected VFP register length (reg: 0x%x).\n", id); return; } const unsigned idx(id & KVM_REG_ARM_VFP_MASK); const unsigned idx_base(idx << 1); const unsigned idx_hi(idx_base + 1); const unsigned idx_lo(idx_base + 0); uint64_t value( ((uint64_t)tc->readFloatRegBitsFlat(idx_hi) << 32) | tc->readFloatRegBitsFlat(idx_lo)); setOneReg(id, value); } else if (REG_IS_VFP_CTRL(id)) { MiscRegIndex idx(decodeVFPCtrlReg(id)); if (idx == NUM_MISCREGS) { if (show_warnings) warn("Unhandled VFP control register: 0x%x\n", id); return; } if (!REG_IS_32BIT(id)) { if (show_warnings) warn("Ignoring VFP control register (%s) with " "unexpected size.\n", miscRegName[idx]); return; } setOneReg(id, (uint32_t)tc->readMiscReg(idx)); } else { if (show_warnings) warn("Unhandled VFP register: 0x%x\n", id); } } void ArmKvmCPU::updateTCStateCore() { for (const KvmIntRegInfo *ri(kvmIntRegs); ri->idx != NUM_INTREGS; ++ri) { tc->setIntRegFlat(ri->idx, getOneRegU32(ri->id)); } for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs); ri->idx != NUM_MISCREGS; ++ri) { tc->setMiscRegNoEffect(ri->idx, getOneRegU32(ri->id)); } /* We want the simulator to execute all side-effects of the CPSR * update since this updates PC state and register maps. */ tc->setMiscReg(MISCREG_CPSR, tc->readMiscRegNoEffect(MISCREG_CPSR)); // We update the PC state after we have updated the CPSR the // contents of the CPSR affects how the npc is updated. PCState pc(tc->pcState()); pc.set(getOneRegU32(REG_CORE32(usr_regs.ARM_pc))); tc->pcState(pc); if (DTRACE(KvmContext)) dumpKvmStateCore(); } void ArmKvmCPU::updateTCStateMisc() { static bool warned(false); // We can't use warn_once since we want // to show /all/ registers const RegIndexVector ®_ids(getRegList());; for (RegIndexVector::const_iterator it(reg_ids.begin()); it != reg_ids.end(); ++it) { if (!REG_IS_ARM(*it)) { if (!warned) warn("Skipping non-ARM register: 0x%x\n", *it); } else if (REG_IS_CORE(*it)) { // Core registers are handled in updateKvmStateCore } else if (REG_CP(*it) <= 15) { updateTCStateCoProc(*it, !warned); } else if (REG_IS_VFP(*it)) { updateTCStateVFP(*it, !warned); } else { if (!warned) { warn("Skipping register with unknown CP (%i) id: 0x%x\n", REG_CP(*it), *it); } } } warned = true; if (DTRACE(KvmContext)) dumpKvmStateMisc(); } void ArmKvmCPU::updateTCStateCoProc(uint64_t id, bool show_warnings) { MiscRegIndex reg(decodeCoProcReg(id)); assert(REG_IS_ARM(id)); assert(REG_CP(id) <= 15); if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) { // HACK HACK HACK: We don't currently support 64-bit TTBR0/TTBR1 hack_once("KVM: 64-bit TTBRx workaround\n"); tc->setMiscRegNoEffect( id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1, (uint32_t)(getOneRegU64(id) & 0xFFFFFFFF)); } else if (reg == MISCREG_TTBCR) { uint32_t value(getOneRegU64(id)); if (value & 0x80000000) panic("KVM: Guest tried to enable LPAE.\n"); tc->setMiscRegNoEffect(reg, value); } else if (reg == NUM_MISCREGS) { if (show_warnings) { warn("KVM: Ignoring unknown KVM co-processor register:\n", id); warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i" " opc2: %i]\n", id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id), REG_OPC2(id)); } } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) { if (show_warnings) warn_once("KVM: Co-processor reg. %s not implemented by gem5.\n", miscRegName[reg]); } else { tc->setMiscRegNoEffect(reg, getOneRegU32(id)); } } void ArmKvmCPU::updateTCStateVFP(uint64_t id, bool show_warnings) { assert(REG_IS_ARM(id)); assert(REG_IS_VFP(id)); if (REG_IS_VFP_REG(id)) { if (!REG_IS_64BIT(id)) { if (show_warnings) warn("Unexpected VFP register length (reg: 0x%x).\n", id); return; } const unsigned idx(id & KVM_REG_ARM_VFP_MASK); const unsigned idx_base(idx << 1); const unsigned idx_hi(idx_base + 1); const unsigned idx_lo(idx_base + 0); uint64_t value(getOneRegU64(id)); tc->setFloatRegBitsFlat(idx_hi, (value >> 32) & 0xFFFFFFFF); tc->setFloatRegBitsFlat(idx_lo, value & 0xFFFFFFFF); } else if (REG_IS_VFP_CTRL(id)) { MiscRegIndex idx(decodeVFPCtrlReg(id)); if (idx == NUM_MISCREGS) { if (show_warnings) warn("Unhandled VFP control register: 0x%x\n", id); return; } if (!REG_IS_32BIT(id)) { if (show_warnings) warn("Ignoring VFP control register (%s) with " "unexpected size.\n", miscRegName[idx]); return; } tc->setMiscReg(idx, getOneRegU64(id)); } else { if (show_warnings) warn("Unhandled VFP register: 0x%x\n", id); } } ArmKvmCPU * ArmKvmCPUParams::create() { return new ArmKvmCPU(this); }