/* * Copyright (c) 2010, 2012, 2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2007-2008 The Florida State University * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Stephen Hines * Ali Saidi */ #include "arch/arm/process.hh" #include "arch/arm/isa_traits.hh" #include "arch/arm/types.hh" #include "base/loader/elf_object.hh" #include "base/loader/object_file.hh" #include "base/logging.hh" #include "cpu/thread_context.hh" #include "debug/Stack.hh" #include "mem/page_table.hh" #include "params/Process.hh" #include "sim/aux_vector.hh" #include "sim/byteswap.hh" #include "sim/process_impl.hh" #include "sim/syscall_return.hh" #include "sim/system.hh" using namespace std; using namespace ArmISA; ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile, ObjectFile::Arch _arch) : Process(params, new EmulationPageTable(params->name, params->pid, PageBytes), objFile), arch(_arch) { fatal_if(params->useArchPT, "Arch page tables not implemented."); } ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile, ObjectFile::Arch _arch) : ArmProcess(params, objFile, _arch) { Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + objFile->bssSize(), PageBytes); Addr stack_base = 0xbf000000L; Addr max_stack_size = 8 * 1024 * 1024; Addr next_thread_stack_base = stack_base - max_stack_size; Addr mmap_end = 0x40000000L; memState = make_shared(brk_point, stack_base, max_stack_size, next_thread_stack_base, mmap_end); } ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile, ObjectFile::Arch _arch) : ArmProcess(params, objFile, _arch) { Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + objFile->bssSize(), PageBytes); Addr stack_base = 0x7fffff0000L; Addr max_stack_size = 8 * 1024 * 1024; Addr next_thread_stack_base = stack_base - max_stack_size; Addr mmap_end = 0x4000000000L; memState = make_shared(brk_point, stack_base, max_stack_size, next_thread_stack_base, mmap_end); } void ArmProcess32::initState() { Process::initState(); argsInit(PageBytes, INTREG_SP); for (int i = 0; i < contextIds.size(); i++) { ThreadContext * tc = system->getThreadContext(contextIds[i]); CPACR cpacr = tc->readMiscReg(MISCREG_CPACR); // Enable the floating point coprocessors. cpacr.cp10 = 0x3; cpacr.cp11 = 0x3; tc->setMiscReg(MISCREG_CPACR, cpacr); // Generically enable floating point support. FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); fpexc.en = 1; tc->setMiscReg(MISCREG_FPEXC, fpexc); } } void ArmProcess64::initState() { Process::initState(); argsInit(PageBytes, INTREG_SP0); for (int i = 0; i < contextIds.size(); i++) { ThreadContext * tc = system->getThreadContext(contextIds[i]); CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); cpsr.mode = MODE_EL0T; tc->setMiscReg(MISCREG_CPSR, cpsr); CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1); // Enable the floating point coprocessors. cpacr.cp10 = 0x3; cpacr.cp11 = 0x3; tc->setMiscReg(MISCREG_CPACR_EL1, cpacr); // Generically enable floating point support. FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); fpexc.en = 1; tc->setMiscReg(MISCREG_FPEXC, fpexc); } } uint32_t ArmProcess32::armHwcapImpl() const { enum ArmCpuFeature { Arm_Swp = 1 << 0, Arm_Half = 1 << 1, Arm_Thumb = 1 << 2, Arm_26Bit = 1 << 3, Arm_FastMult = 1 << 4, Arm_Fpa = 1 << 5, Arm_Vfp = 1 << 6, Arm_Edsp = 1 << 7, Arm_Java = 1 << 8, Arm_Iwmmxt = 1 << 9, Arm_Crunch = 1 << 10, Arm_ThumbEE = 1 << 11, Arm_Neon = 1 << 12, Arm_Vfpv3 = 1 << 13, Arm_Vfpv3d16 = 1 << 14 }; return Arm_Swp | Arm_Half | Arm_Thumb | Arm_FastMult | Arm_Vfp | Arm_Edsp | Arm_ThumbEE | Arm_Neon | Arm_Vfpv3 | Arm_Vfpv3d16; } uint32_t ArmProcess64::armHwcapImpl() const { // In order to know what these flags mean, please refer to Linux // /Documentation/arm64/elf_hwcaps.txt text file. enum ArmCpuFeature { Arm_Fp = 1 << 0, Arm_Asimd = 1 << 1, Arm_Evtstrm = 1 << 2, Arm_Aes = 1 << 3, Arm_Pmull = 1 << 4, Arm_Sha1 = 1 << 5, Arm_Sha2 = 1 << 6, Arm_Crc32 = 1 << 7, Arm_Atomics = 1 << 8, Arm_Fphp = 1 << 9, Arm_Asimdhp = 1 << 10, Arm_Cpuid = 1 << 11, Arm_Asimdrdm = 1 << 12, Arm_Jscvt = 1 << 13, Arm_Fcma = 1 << 14, Arm_Lrcpc = 1 << 15, Arm_Dcpop = 1 << 16, Arm_Sha3 = 1 << 17, Arm_Sm3 = 1 << 18, Arm_Sm4 = 1 << 19, Arm_Asimddp = 1 << 20, Arm_Sha512 = 1 << 21, Arm_Sve = 1 << 22, Arm_Asimdfhm = 1 << 23, Arm_Dit = 1 << 24, Arm_Uscat = 1 << 25, Arm_Ilrcpc = 1 << 26, Arm_Flagm = 1 << 27 }; uint32_t hwcap = 0; ThreadContext *tc = system->getThreadContext(contextIds[0]); const AA64PFR0 pf_r0 = tc->readMiscReg(MISCREG_ID_AA64PFR0_EL1); hwcap |= (pf_r0.fp == 0) ? Arm_Fp : 0; hwcap |= (pf_r0.fp == 1) ? Arm_Fphp | Arm_Fp : 0; hwcap |= (pf_r0.advsimd == 0) ? Arm_Asimd : 0; hwcap |= (pf_r0.advsimd == 1) ? Arm_Asimdhp | Arm_Asimd : 0; hwcap |= (pf_r0.sve >= 1) ? Arm_Sve : 0; hwcap |= (pf_r0.dit >= 1) ? Arm_Dit : 0; const AA64ISAR0 isa_r0 = tc->readMiscReg(MISCREG_ID_AA64ISAR0_EL1); hwcap |= (isa_r0.aes >= 1) ? Arm_Aes : 0; hwcap |= (isa_r0.aes >= 2) ? Arm_Pmull : 0; hwcap |= (isa_r0.sha1 >= 1) ? Arm_Sha1 : 0; hwcap |= (isa_r0.sha2 >= 1) ? Arm_Sha2 : 0; hwcap |= (isa_r0.sha2 >= 2) ? Arm_Sha512 : 0; hwcap |= (isa_r0.crc32 >= 1) ? Arm_Crc32 : 0; hwcap |= (isa_r0.atomic >= 1) ? Arm_Atomics : 0; hwcap |= (isa_r0.rdm >= 1) ? Arm_Asimdrdm : 0; hwcap |= (isa_r0.sha3 >= 1) ? Arm_Sha3 : 0; hwcap |= (isa_r0.sm3 >= 1) ? Arm_Sm3 : 0; hwcap |= (isa_r0.sm4 >= 1) ? Arm_Sm4 : 0; hwcap |= (isa_r0.dp >= 1) ? Arm_Asimddp : 0; hwcap |= (isa_r0.fhm >= 1) ? Arm_Asimdfhm : 0; hwcap |= (isa_r0.ts >= 1) ? Arm_Flagm : 0; const AA64ISAR1 isa_r1 = tc->readMiscReg(MISCREG_ID_AA64ISAR1_EL1); hwcap |= (isa_r1.dpb >= 1) ? Arm_Dcpop : 0; hwcap |= (isa_r1.jscvt >= 1) ? Arm_Jscvt : 0; hwcap |= (isa_r1.fcma >= 1) ? Arm_Fcma : 0; hwcap |= (isa_r1.lrcpc >= 1) ? Arm_Lrcpc : 0; hwcap |= (isa_r1.lrcpc >= 2) ? Arm_Ilrcpc : 0; const AA64MMFR2 mm_fr2 = tc->readMiscReg(MISCREG_ID_AA64MMFR2_EL1); hwcap |= (mm_fr2.at >= 1) ? Arm_Uscat : 0; return hwcap; } template void ArmProcess::argsInit(int pageSize, IntRegIndex spIndex) { int intSize = sizeof(IntType); typedef AuxVector auxv_t; std::vector auxv; string filename; if (argv.size() < 1) filename = ""; else filename = argv[0]; //We want 16 byte alignment uint64_t align = 16; // Patch the ld_bias for dynamic executables. updateBias(); // load object file into target memory objFile->loadSections(initVirtMem); //Setup the auxilliary vectors. These will already have endian conversion. //Auxilliary vectors are loaded only for elf formatted executables. ElfObject * elfObject = dynamic_cast(objFile); if (elfObject) { if (objFile->getOpSys() == ObjectFile::Linux) { IntType features = armHwcap(); //Bits which describe the system hardware capabilities //XXX Figure out what these should be auxv.push_back(auxv_t(M5_AT_HWCAP, features)); //Frequency at which times() increments auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64)); //Whether to enable "secure mode" in the executable auxv.push_back(auxv_t(M5_AT_SECURE, 0)); // Pointer to 16 bytes of random data auxv.push_back(auxv_t(M5_AT_RANDOM, 0)); //The filename of the program auxv.push_back(auxv_t(M5_AT_EXECFN, 0)); //The string "v71" -- ARM v7 architecture auxv.push_back(auxv_t(M5_AT_PLATFORM, 0)); } //The system page size auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes)); // For statically linked executables, this is the virtual address of the // program header tables if they appear in the executable image auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); // This is the size of a program header entry from the elf file. auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); // This is the number of program headers from the original elf file. auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); // This is the base address of the ELF interpreter; it should be // zero for static executables or contain the base address for // dynamic executables. auxv.push_back(auxv_t(M5_AT_BASE, getBias())); //XXX Figure out what this should be. auxv.push_back(auxv_t(M5_AT_FLAGS, 0)); //The entry point to the program auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); //Different user and group IDs auxv.push_back(auxv_t(M5_AT_UID, uid())); auxv.push_back(auxv_t(M5_AT_EUID, euid())); auxv.push_back(auxv_t(M5_AT_GID, gid())); auxv.push_back(auxv_t(M5_AT_EGID, egid())); } //Figure out how big the initial stack nedes to be // A sentry NULL void pointer at the top of the stack. int sentry_size = intSize; string platform = "v71"; int platform_size = platform.size() + 1; // Bytes for AT_RANDOM above, we'll just keep them 0 int aux_random_size = 16; // as per the specification // The aux vectors are put on the stack in two groups. The first group are // the vectors that are generated as the elf is loaded. The second group // are the ones that were computed ahead of time and include the platform // string. int aux_data_size = filename.size() + 1; int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int info_block_size = sentry_size + env_data_size + arg_data_size + aux_data_size + platform_size + aux_random_size; //Each auxilliary vector is two 4 byte words int aux_array_size = intSize * 2 * (auxv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int argv_array_size = intSize * (argv.size() + 1); int argc_size = intSize; //Figure out the size of the contents of the actual initial frame int frame_size = info_block_size + aux_array_size + envp_array_size + argv_array_size + argc_size; //There needs to be padding after the auxiliary vector data so that the //very bottom of the stack is aligned properly. int partial_size = frame_size; int aligned_partial_size = roundUp(partial_size, align); int aux_padding = aligned_partial_size - partial_size; int space_needed = frame_size + aux_padding; memState->setStackMin(memState->getStackBase() - space_needed); memState->setStackMin(roundDown(memState->getStackMin(), align)); memState->setStackSize(memState->getStackBase() - memState->getStackMin()); // map memory allocateMem(roundDown(memState->getStackMin(), pageSize), roundUp(memState->getStackSize(), pageSize)); // map out initial stack contents IntType sentry_base = memState->getStackBase() - sentry_size; IntType aux_data_base = sentry_base - aux_data_size; IntType env_data_base = aux_data_base - env_data_size; IntType arg_data_base = env_data_base - arg_data_size; IntType platform_base = arg_data_base - platform_size; IntType aux_random_base = platform_base - aux_random_size; IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding; IntType envp_array_base = auxv_array_base - envp_array_size; IntType argv_array_base = envp_array_base - argv_array_size; IntType argc_base = argv_array_base - argc_size; DPRINTF(Stack, "The addresses of items on the initial stack:\n"); DPRINTF(Stack, "0x%x - aux data\n", aux_data_base); DPRINTF(Stack, "0x%x - env data\n", env_data_base); DPRINTF(Stack, "0x%x - arg data\n", arg_data_base); DPRINTF(Stack, "0x%x - random data\n", aux_random_base); DPRINTF(Stack, "0x%x - platform base\n", platform_base); DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base); DPRINTF(Stack, "0x%x - envp array\n", envp_array_base); DPRINTF(Stack, "0x%x - argv array\n", argv_array_base); DPRINTF(Stack, "0x%x - argc \n", argc_base); DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin()); // write contents to stack // figure out argc IntType argc = argv.size(); IntType guestArgc = ArmISA::htog(argc); //Write out the sentry void * IntType sentry_NULL = 0; initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size); //Fix up the aux vectors which point to other data for (int i = auxv.size() - 1; i >= 0; i--) { if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) { auxv[i].setAuxVal(platform_base); initVirtMem.writeString(platform_base, platform.c_str()); } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) { auxv[i].setAuxVal(aux_data_base); initVirtMem.writeString(aux_data_base, filename.c_str()); } else if (auxv[i].getHostAuxType() == M5_AT_RANDOM) { auxv[i].setAuxVal(aux_random_base); // Just leave the value 0, we don't want randomness } } //Copy the aux stuff for (int x = 0; x < auxv.size(); x++) { initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, (uint8_t*)&(auxv[x].getAuxType()), intSize); initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, (uint8_t*)&(auxv[x].getAuxVal()), intSize); } //Write out the terminating zeroed auxilliary vector const uint64_t zero = 0; initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(), (uint8_t*)&zero, 2 * intSize); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); ThreadContext *tc = system->getThreadContext(contextIds[0]); //Set the stack pointer register tc->setIntReg(spIndex, memState->getStackMin()); //A pointer to a function to run when the program exits. We'll set this //to zero explicitly to make sure this isn't used. tc->setIntReg(ArgumentReg0, 0); //Set argument regs 1 and 2 to argv[0] and envp[0] respectively if (argv.size() > 0) { tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size - argv[argv.size() - 1].size() - 1); } else { tc->setIntReg(ArgumentReg1, 0); } if (envp.size() > 0) { tc->setIntReg(ArgumentReg2, env_data_base + env_data_size - envp[envp.size() - 1].size() - 1); } else { tc->setIntReg(ArgumentReg2, 0); } PCState pc; pc.thumb(arch == ObjectFile::Thumb); pc.nextThumb(pc.thumb()); pc.aarch64(arch == ObjectFile::Arm64); pc.nextAArch64(pc.aarch64()); pc.set(getStartPC() & ~mask(1)); tc->pcState(pc); //Align the "stackMin" to a page boundary. memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); } ArmISA::IntReg ArmProcess32::getSyscallArg(ThreadContext *tc, int &i) { assert(i < 6); return tc->readIntReg(ArgumentReg0 + i++); } ArmISA::IntReg ArmProcess64::getSyscallArg(ThreadContext *tc, int &i) { assert(i < 8); return tc->readIntReg(ArgumentReg0 + i++); } ArmISA::IntReg ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width) { assert(width == 32 || width == 64); if (width == 32) return getSyscallArg(tc, i); // 64 bit arguments are passed starting in an even register if (i % 2 != 0) i++; // Registers r0-r6 can be used assert(i < 5); uint64_t val; val = tc->readIntReg(ArgumentReg0 + i++); val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32); return val; } ArmISA::IntReg ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width) { return getSyscallArg(tc, i); } void ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val) { assert(i < 6); tc->setIntReg(ArgumentReg0 + i, val); } void ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val) { assert(i < 8); tc->setIntReg(ArgumentReg0 + i, val); } void ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) { if (objFile->getOpSys() == ObjectFile::FreeBSD) { // Decode return value if (sysret.encodedValue() >= 0) // FreeBSD checks the carry bit to determine if syscall is succeeded tc->setCCReg(CCREG_C, 0); else { sysret = -sysret.encodedValue(); } } tc->setIntReg(ReturnValueReg, sysret.encodedValue()); } void ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) { if (objFile->getOpSys() == ObjectFile::FreeBSD) { // Decode return value if (sysret.encodedValue() >= 0) // FreeBSD checks the carry bit to determine if syscall is succeeded tc->setCCReg(CCREG_C, 0); else { sysret = -sysret.encodedValue(); } } tc->setIntReg(ReturnValueReg, sysret.encodedValue()); }