// -*- mode:c++ -*-

// Copyright (c) 2007 MIPS Technologies, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Korey Sewell
//          Brett Miller
//          Jaidev Patwardhan

////////////////////////////////////////////////////////////////////
//
// The actual MIPS32 ISA decoder
// -----------------------------
// The following instructions are specified in the MIPS32 ISA
// Specification. Decoding closely follows the style specified
// in the MIPS32 ISA specification document starting with Table
// A-2 (document available @ http://www.mips.com)
//
decode OPCODE_HI default Unknown::unknown() {
    //Table A-2
    0x0: decode OPCODE_LO {
        0x0: decode FUNCTION_HI {
            0x0: decode FUNCTION_LO {
                0x1: decode MOVCI {
                    format BasicOp {
                        0: movf({{ Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs; }});
                        1: movt({{ Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs; }});
                    }
                }

                format BasicOp {
                    //Table A-3 Note: "Specific encodings of the rd, rs, and
                    //rt fields are used to distinguish SLL, SSNOP, and EHB
                    //functions
                    0x0: decode RS  {
                        0x0: decode RT_RD {
                            0x0: decode SA default Nop::nop() {
                                 0x1: ssnop({{;}});
                                 0x3: ehb({{;}});
                            }
                            default: sll({{ Rd = Rt.uw << SA; }});
                        }
                    }

                    0x2: decode RS_SRL {
                        0x0:decode SRL {
                            0: srl({{ Rd = Rt.uw >> SA; }});

                            //Hardcoded assuming 32-bit ISA, probably need parameter here
                            1: rotr({{ Rd = (Rt.uw << (32 - SA)) | (Rt.uw >> SA);}});
                        }
                    }

                    0x3: decode RS {
                        0x0: sra({{
                            uint32_t temp = Rt >> SA;
                            if ( (Rt & 0x80000000) > 0 ) {
                                uint32_t mask = 0x80000000;
                                for(int i=0; i < SA; i++) {
                                    temp |= mask;
                                    mask = mask >> 1;
                                }
                            }
                            Rd = temp;
                        }});
                    }

                    0x4: sllv({{ Rd = Rt.uw << Rs<4:0>; }});

                    0x6: decode SRLV {
                        0: srlv({{ Rd = Rt.uw >> Rs<4:0>; }});

                        //Hardcoded assuming 32-bit ISA, probably need parameter here
                        1: rotrv({{ Rd = (Rt.uw << (32 - Rs<4:0>)) | (Rt.uw >> Rs<4:0>);}});
                    }

                    0x7: srav({{
                        int shift_amt = Rs<4:0>;

                        uint32_t temp = Rt >> shift_amt;

                        if ( (Rt & 0x80000000) > 0 ) {
                                uint32_t mask = 0x80000000;
                                for(int i=0; i < shift_amt; i++) {
                                    temp |= mask;
                                    mask = mask >> 1;
                                }
                            }

                        Rd = temp;
                    }});
                }
            }

            0x1: decode FUNCTION_LO {
                //Table A-3 Note: "Specific encodings of the hint field are
                //used to distinguish JR from JR.HB and JALR from JALR.HB"
                format Jump {
                    0x0: decode HINT {
                        0x1: jr_hb({{ if(Config1_CA == 0){NNPC = Rs;}else{panic("MIPS16e not supported\n");}; }}, IsReturn, ClearHazards);
                        default: jr({{ if(Config1_CA == 0){NNPC = Rs;}else{panic("MIPS16e not supported\n");};}}, IsReturn);
                    }

                    0x1: decode HINT {
                        0x1: jalr_hb({{ Rd = NNPC; NNPC = Rs; }}, IsCall
                                     , ClearHazards);
                        default: jalr({{ Rd = NNPC; NNPC = Rs; }}, IsCall);
                    }
                }

                format BasicOp {
                    0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }});
                    0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }});
#if FULL_SYSTEM
                    0x4: syscall({{
                                   fault = new SystemCallFault();
                                 }});
#else
                    0x4: syscall({{ xc->syscall(R2); }},
                                 IsSerializeAfter, IsNonSpeculative);
#endif
                    0x7: sync({{ ; }}, IsMemBarrier);
                    0x5: break({{fault = new BreakpointFault();}});
                }

            }

            0x2: decode FUNCTION_LO {
                0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }}, IntMultOp, IsIprAccess);
                0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }});
                0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }}, IntMultOp, IsIprAccess);
                0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }});
            }

            0x3: decode FUNCTION_LO {
                format HiLoRdSelValOp {
                    0x0: mult({{ val = Rs.sd * Rt.sd; }}, IntMultOp);
                    0x1: multu({{ val = Rs.ud * Rt.ud; }}, IntMultOp);
                }

                format HiLoOp {
                    0x2: div({{ if (Rt.sd != 0) {
                        HI0 = Rs.sd % Rt.sd;
                        LO0 = Rs.sd / Rt.sd;
                    }
                    }}, IntDivOp);

                    0x3: divu({{ if (Rt.ud != 0) {
                        HI0 = Rs.ud % Rt.ud;
                        LO0 = Rs.ud / Rt.ud;
                    }
                    }}, IntDivOp);
                }
            }

            0x4: decode HINT {
                0x0: decode FUNCTION_LO {
                    format IntOp {
                      0x0: add({{  /* More complicated since an ADD can cause an arithmetic overflow exception */
                                     int64_t Src1 = Rs.sw;
                                     int64_t Src2 = Rt.sw;
                                     int64_t temp_result;
#if  FULL_SYSTEM
                                     if(((Src1 >> 31) & 1) == 1)
                                       Src1 |= 0x100000000LL;
#endif
                                     temp_result = Src1 + Src2;
#if  FULL_SYSTEM
                                     if(((temp_result >> 31) & 1) == ((temp_result >> 32) & 1)){
#endif
                                       Rd.sw = temp_result;
#if  FULL_SYSTEM
                                     } else{
                                       fault = new ArithmeticFault();
                                     }
#endif

                                   }});
                        0x1: addu({{ Rd.sw = Rs.sw + Rt.sw;}});
                        0x2: sub({{
                                     /* More complicated since an SUB can cause an arithmetic overflow exception */
                                     int64_t Src1 = Rs.sw;
                                     int64_t Src2 = Rt.sw;
                                     int64_t temp_result = Src1 - Src2;
#if  FULL_SYSTEM
                                     if(((temp_result >> 31) & 1) == ((temp_result>>32) & 1)){
#endif
                                       Rd.sw = temp_result;
#if  FULL_SYSTEM
                                     } else{
                                       fault = new ArithmeticFault();
                                     }
#endif
                                   }});
                        0x3: subu({{ Rd.sw = Rs.sw - Rt.sw;}});
                        0x4: and({{ Rd = Rs & Rt;}});
                        0x5: or({{ Rd = Rs | Rt;}});
                        0x6: xor({{ Rd = Rs ^ Rt;}});
                        0x7: nor({{ Rd = ~(Rs | Rt);}});
                    }
                }
            }

            0x5: decode HINT {
                0x0: decode FUNCTION_LO {
                    format IntOp{
                        0x2: slt({{  Rd.sw = ( Rs.sw < Rt.sw ) ? 1 : 0}});
                        0x3: sltu({{ Rd.uw = ( Rs.uw < Rt.uw ) ? 1 : 0}});
                    }
                }
            }

            0x6: decode FUNCTION_LO {
                format Trap {
                    0x0: tge({{  cond = (Rs.sw >= Rt.sw); }});
                    0x1: tgeu({{ cond = (Rs.uw >= Rt.uw); }});
                    0x2: tlt({{ cond = (Rs.sw < Rt.sw); }});
                    0x3: tltu({{ cond = (Rs.uw < Rt.uw); }});
                    0x4: teq({{ cond = (Rs.sw == Rt.sw); }});
                    0x6: tne({{ cond = (Rs.sw != Rt.sw); }});
                }
            }
        }

        0x1: decode REGIMM_HI {
            0x0: decode REGIMM_LO {
                format Branch {
                    0x0: bltz({{ cond = (Rs.sw < 0); }});
                    0x1: bgez({{ cond = (Rs.sw >= 0); }});
                    0x2: bltzl({{ cond = (Rs.sw < 0); }}, Likely);
                    0x3: bgezl({{ cond = (Rs.sw >= 0); }}, Likely);
                }
            }

            0x1: decode REGIMM_LO {
                format TrapImm {
                    0x0: tgei( {{ cond = (Rs.sw >= (int16_t)INTIMM); }});
                    0x1: tgeiu({{ cond = (Rs.uw >= (uint32_t)((int32_t)((int16_t)INTIMM))); }});
                    0x2: tlti( {{ cond = (Rs.sw < (int16_t)INTIMM); }});
                    0x3: tltiu({{ cond = (Rs.uw < (uint32_t)((int32_t)((int16_t)INTIMM))); }});
                    0x4: teqi( {{ cond = (Rs.sw == (int16_t)INTIMM);}});
                    0x6: tnei( {{ cond = (Rs.sw != (int16_t)INTIMM);}});
                }
            }

            0x2: decode REGIMM_LO {
                format Branch {
                    0x0: bltzal({{ cond = (Rs.sw < 0); }}, Link);
                    0x1: decode RS {
                        0x0: bal ({{ cond = 1; }}, IsCall, Link);
                        default: bgezal({{ cond = (Rs.sw >= 0); }}, Link);
                    }
                    0x2: bltzall({{ cond = (Rs.sw < 0); }}, Link, Likely);
                    0x3: bgezall({{ cond = (Rs.sw >= 0); }}, Link, Likely);
                }
            }

            0x3: decode REGIMM_LO {
                // from Table 5-4 MIPS32 REGIMM Encoding of rt Field (DSP ASE MANUAL)
                0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }});
                format WarnUnimpl {
                    0x7: synci();
                }
            }
        }

        format Jump {
            0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2);}});
            0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }}, IsCall,
                     Link);
        }

        format Branch {
            0x4: decode RS_RT  {
                0x0: b({{ cond = 1; }});
                default: beq({{ cond = (Rs.sw == Rt.sw); }});
            }
            0x5: bne({{ cond = (Rs.sw != Rt.sw); }});
            0x6: blez({{ cond = (Rs.sw <= 0); }});
            0x7: bgtz({{ cond = (Rs.sw > 0); }});
        }
    }

    0x1: decode OPCODE_LO {
        format IntImmOp {
            0x0: addi({{
                          int64_t Src1 = Rs.sw;
                          int64_t Src2 = imm;
                          int64_t temp_result;
#if  FULL_SYSTEM
                          if(((Src1 >> 31) & 1) == 1)
                            Src1 |= 0x100000000LL;
#endif
                          temp_result = Src1 + Src2;
#if  FULL_SYSTEM
                          if(((temp_result >> 31) & 1) == ((temp_result >> 32) & 1)){
#endif
                            Rt.sw = temp_result;
#if  FULL_SYSTEM
                          } else{
                            fault = new ArithmeticFault();
                          }
#endif
                        }});
            0x1: addiu({{ Rt.sw = Rs.sw + imm;}});
            0x2: slti({{ Rt.sw = ( Rs.sw < imm) ? 1 : 0 }});

            //Edited to include MIPS AVP Pass/Fail instructions and
            //default to the sltiu instruction
            0x3: decode RS_RT_INTIMM {
                0xabc1: BasicOp::fail({{ exitSimLoop("AVP/SRVP Test Failed"); }});
                0xabc2: BasicOp::pass({{ exitSimLoop("AVP/SRVP Test Passed"); }});
              default: sltiu({{ Rt.uw = ( Rs.uw < (uint32_t)sextImm ) ? 1 : 0 }});
            }

            0x4: andi({{ Rt.sw = Rs.sw & zextImm;}});
            0x5: ori({{ Rt.sw = Rs.sw | zextImm;}});
            0x6: xori({{ Rt.sw = Rs.sw ^ zextImm;}});

            0x7: decode RS {
                0x0: lui({{ Rt = imm << 16}});
            }
        }
    }

    0x2: decode OPCODE_LO {
        //Table A-11 MIPS32 COP0 Encoding of rs Field
        0x0: decode RS_MSB {
            0x0: decode RS {
                 format CP0Control {
                  0x0: mfc0({{  Rt = CP0_RD_SEL;
                                /* Hack for PageMask */
                                if(RD == 5) // PageMask
                                  if(Config3_SP == 0 || PageGrain_ESP == 0)
                                    Rt &= 0xFFFFE7FF;
                              }});
                  0x4: mtc0({{  CP0_RD_SEL = Rt;

                                if(RD == 11) // Compare{
                                  if(Cause_TI == 1){
                                    Cause_TI = 0;
                                    MiscReg cause = xc->readMiscRegNoEffect(MipsISA::Cause);
                                    int Offset = 10; // corresponding to Cause_IP0
                                    Offset += ((IntCtl_IPTI) - 2);
                                    replaceBits(cause,Offset,Offset,0);
                                    xc->setMiscRegNoEffect(MipsISA::Cause,cause);
                                  }

                              }});
                 }
                 format CP0Unimpl {
                   0x1: dmfc0();
                   0x5: dmtc0();
                   default: unknown();
                 }
                format MT_MFTR { // Decode MIPS MT MFTR instruction into sub-instructions
                    0x8: decode MT_U {
                        0x0: mftc0({{ data = xc->readRegOtherThread((RT << 3 | SEL) +
                                                                    Ctrl_Base_DepTag);
                                   }});
                        0x1: decode SEL {
                            0x0: mftgpr({{ data = xc->readRegOtherThread(RT); }});
                            0x1: decode RT {
                                0x0: mftlo_dsp0({{ data = xc->readRegOtherThread(MipsISA::DSPLo0); }});
                                0x1: mfthi_dsp0({{ data = xc->readRegOtherThread(MipsISA::DSPHi0); }});
                                0x2: mftacx_dsp0({{ data = xc->readRegOtherThread(MipsISA::DSPACX0); }});
                                0x4: mftlo_dsp1({{ data = xc->readRegOtherThread(MipsISA::DSPLo1); }});
                                0x5: mfthi_dsp1({{ data = xc->readRegOtherThread(MipsISA::DSPHi1); }});
                                0x6: mftacx_dsp1({{ data = xc->readRegOtherThread(MipsISA::DSPACX1); }});
                                0x8: mftlo_dsp2({{ data = xc->readRegOtherThread(MipsISA::DSPLo2); }});
                                0x9: mfthi_dsp2({{ data = xc->readRegOtherThread(MipsISA::DSPHi2); }});
                                0x10: mftacx_dsp2({{ data = xc->readRegOtherThread(MipsISA::DSPACX2); }});
                                0x12: mftlo_dsp3({{ data = xc->readRegOtherThread(MipsISA::DSPLo3); }});
                                0x13: mfthi_dsp3({{ data = xc->readRegOtherThread(MipsISA::DSPHi3); }});
                                0x14: mftacx_dsp3({{ data = xc->readRegOtherThread(MipsISA::DSPACX3); }});
                                0x16: mftdsp({{ data = xc->readRegOtherThread(MipsISA::DSPControl); }});
                               default: CP0Unimpl::unknown();
                            }
                            0x2: decode MT_H {
                                0x0: mftc1({{ data = xc->readRegOtherThread(RT +
                                                                            FP_Base_DepTag);
                                           }});
                                0x1: mfthc1({{ data = xc->readRegOtherThread(RT +
                                                                             FP_Base_DepTag);
                                           }});
                               }
                            0x3: cftc1({{ uint32_t fcsr_val = xc->readRegOtherThread(MipsISA::FCSR +
                                                                            FP_Base_DepTag);
                                          switch (RT)
                                          {
                                               case 0:
                                                 data = xc->readRegOtherThread(MipsISA::FIR +
                                                                               Ctrl_Base_DepTag);
                                                 break;
                                               case 25:
                                                 data = (fcsr_val & 0xFE000000 >> 24)
                                                     | (fcsr_val & 0x00800000 >> 23);
                                                 break;
                                               case 26:
                                                 data = fcsr_val & 0x0003F07C;
                                                 break;
                                               case 28:
                                                 data = (fcsr_val & 0x00000F80)
                                                     | (fcsr_val & 0x01000000 >> 21)
                                                     | (fcsr_val & 0x00000003);
                                                 break;
                                               case 31:
                                                 data = fcsr_val;
                                                 break;
                                               default:
                                                 fatal("FP Control Value (%d) Not Valid");
                                          }
                                        }});
                           default: CP0Unimpl::unknown();
                        }
                  }
                }

                format MT_MTTR { // Decode MIPS MT MTTR instruction into sub-instructions
                    0xC: decode MT_U {
                        0x0: mttc0({{ xc->setRegOtherThread((RD << 3 | SEL) + Ctrl_Base_DepTag,
                                                            Rt);
                                   }});
                        0x1: decode SEL {
                            0x0: mttgpr({{ xc->setRegOtherThread(RD, Rt); }});
                            0x1: decode RT {
                                0x0: mttlo_dsp0({{ xc->setRegOtherThread(MipsISA::DSPLo0, Rt);
                                                }});
                                0x1: mtthi_dsp0({{ xc->setRegOtherThread(MipsISA::DSPHi0,
                                                                         Rt);
                                                }});
                                0x2: mttacx_dsp0({{ xc->setRegOtherThread(MipsISA::DSPACX0,
                                                                          Rt);
                                                 }});
                                0x4: mttlo_dsp1({{ xc->setRegOtherThread(MipsISA::DSPLo1,
                                                                         Rt);
                                                }});
                                0x5: mtthi_dsp1({{ xc->setRegOtherThread(MipsISA::DSPHi1,
                                                                         Rt);
                                                }});
                                0x6: mttacx_dsp1({{ xc->setRegOtherThread(MipsISA::DSPACX1,
                                                                          Rt);
                                                 }});
                                0x8: mttlo_dsp2({{ xc->setRegOtherThread(MipsISA::DSPLo2,
                                                                         Rt);
                                                }});
                                0x9: mtthi_dsp2({{ xc->setRegOtherThread(MipsISA::DSPHi2,
                                                                         Rt);
                                                }});
                                0x10: mttacx_dsp2({{ xc->setRegOtherThread(MipsISA::DSPACX2,
                                                                           Rt);
                                                  }});
                                0x12: mttlo_dsp3({{ xc->setRegOtherThread(MipsISA::DSPLo3,
                                                                          Rt);
                                                 }});
                                0x13: mtthi_dsp3({{ xc->setRegOtherThread(MipsISA::DSPHi3,
                                                                          Rt);
                                                 }});
                                0x14: mttacx_dsp3({{ xc->setRegOtherThread(MipsISA::DSPACX3, Rt);
                                                  }});
                                0x16: mttdsp({{ xc->setRegOtherThread(MipsISA::DSPControl, Rt); }});
                               default: CP0Unimpl::unknown();

                            }
                            0x2: mttc1({{ uint64_t data = xc->readRegOtherThread(RD +
                                                                                FP_Base_DepTag);
                                          data = insertBits(data, top_bit, bottom_bit, Rt);
                                          xc->setRegOtherThread(RD + FP_Base_DepTag, data);
                                       }});
                            0x3: cttc1({{ uint32_t data;
                                          switch (RD)
                                          {
                                            case 25:
                                              data = 0 | (Rt.uw<7:1> << 25) // move 31...25
                                                  | (FCSR & 0x01000000) // bit 24
                                                  | (FCSR & 0x004FFFFF);// bit 22...0
                                              break;

                                            case 26:
                                              data = 0 | (FCSR & 0xFFFC0000) // move 31...18
                                                  | Rt.uw<17:12> << 12           // bit 17...12
                                                  | (FCSR & 0x00000F80) << 7// bit 11...7
                                                  | Rt.uw<6:2> << 2              // bit 6...2
                                                  | (FCSR & 0x00000002);     // bit 1...0
                                              break;

                                            case 28:
                                              data = 0 | (FCSR & 0xFE000000) // move 31...25
                                                  | Rt.uw<2:2> << 24       // bit 24
                                                  | (FCSR & 0x00FFF000) << 23// bit 23...12
                                                  | Rt.uw<11:7> << 7       // bit 24
                                                  | (FCSR & 0x000007E)
                                                  | Rt.uw<1:0>;// bit 22...0
                                              break;

                                            case 31:
                                              data  = Rt.uw;
                                              break;

                                            default:
                                              panic("FP Control Value (%d) Not Available. Ignoring Access to"
                                                    "Floating Control Status Register", FS);
                                          }
                                          xc->setRegOtherThread(FCSR, data);
                                       }});
                               default: CP0Unimpl::unknown();
                        }
                    }
                }


                0xB: decode RD {
                    format MT_Control {
                        0x0: decode POS {
                            0x0: decode SEL {
                                0x1: decode SC {
                                    0x0: dvpe({{ Rt = MVPControl;
                                                 if (VPEConf0<VPEC0_MVP:> == 1) {
                                                     MVPControl = insertBits(MVPControl, MVPC_EVP, 0);
                                                 }
                                              }});
                                    0x1: evpe({{ Rt = MVPControl;
                                                 if (VPEConf0<VPEC0_MVP:> == 1) {
                                                     MVPControl = insertBits(MVPControl, MVPC_EVP, 1);
                                                 }
                                              }});
                                   default:CP0Unimpl::unknown();
                                }
                               default:CP0Unimpl::unknown();
                            }
                        default:CP0Unimpl::unknown();
                      }

                        0x1: decode POS {
                            0xF: decode SEL {
                                0x1: decode SC {
                                    0x0: dmt({{ Rt = VPEControl;
                                                VPEControl = insertBits(VPEControl, VPEC_TE, 0);
                                         }});
                                    0x1: emt({{ Rt = VPEControl;
                                                VPEControl = insertBits(VPEControl, VPEC_TE, 1);
                                         }});
                                   default:CP0Unimpl::unknown();
                                }
                               default:CP0Unimpl::unknown();
                            }
                            default:CP0Unimpl::unknown();
                        }
                    }
                    0xC: decode POS {
                      0x0: decode SC {
                        0x0: CP0Control::di({{
                            if(Config_AR >= 1) // Rev 2.0 or beyond?
                                {
                                  Rt = Status;
                                  Status_IE = 0;
                                }
                            else // Enable this else branch once we actually set values for Config on init
                              {
                                fault = new ReservedInstructionFault();
                              }
                          }});
                        0x1: CP0Control::ei({{
                            if(Config_AR >= 1)
                              {
                                Rt = Status;
                                Status_IE = 1;
                              }
                            else
                              {
                                fault = new ReservedInstructionFault();
                              }
                          }});
                        default:CP0Unimpl::unknown();
                      }
                    }
                default: CP0Unimpl::unknown();
                }
                format CP0Control {
                    0xA: rdpgpr({{
                      if(Config_AR >= 1)
                        { // Rev 2 of the architecture
                          panic("Shadow Sets Not Fully Implemented.\n");
                          //Rd = xc->tcBase()->readIntReg(RT + NumIntRegs * SRSCtl_PSS);
                        }
                      else
                        {
                          fault = new ReservedInstructionFault();
                        }
                         }});
                    0xE: wrpgpr({{
                      if(Config_AR >= 1)
                        { // Rev 2 of the architecture
                          panic("Shadow Sets Not Fully Implemented.\n");
                          //xc->tcBase()->setIntReg(RD + NumIntRegs * SRSCtl_PSS,Rt);
                          //			  warn("Writing %d to %d, PSS: %d, SRS: %x\n",Rt,RD + NumIntRegs * SRSCtl_PSS, SRSCtl_PSS,SRSCtl);
                        }
                      else
                        {
                          fault = new ReservedInstructionFault();
                        }

                         }});
                }

               }

            //Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
            0x1: decode FUNCTION {
              format CP0Control {
                0x18: eret({{
                               DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC);
                               // Ugly hack to get the value of Status_EXL
                               if(Status_EXL == 1){
                                 DPRINTF(MipsPRA,"ERET EXL Hack\n");
                               }
                  if(Status_ERL == 1){
                    Status_ERL = 0;
                    NPC = ErrorEPC;
                    NNPC = ErrorEPC + sizeof(MachInst); // Need to adjust NNPC, otherwise things break
                  }
                  else {
                    NPC = EPC;
                    NNPC = EPC + sizeof(MachInst); // Need to adjust NNPC, otherwise things break
                    Status_EXL = 0;
                    if(Config_AR >=1 && SRSCtl_HSS > 0 && Status_BEV == 0){
                      SRSCtl_CSS = SRSCtl_PSS;
                      //xc->setShadowSet(SRSCtl_PSS);
                    }
                  }
                  LLFlag = 0;
                 }},IsReturn,IsSerializing,IsERET);

                0x1F: deret({{
                  // if(EJTagImplemented()) {
                  if(Debug_DM == 1){
                    Debug_DM = 1;
                    Debug_IEXI = 0;
                    NPC = DEPC;
                  }
                  else
                    {
                      // Undefined;
                    }
                  //} // EJTag Implemented
                  //else {
                  // Reserved Instruction Exception
                  //}
                 }},IsReturn,IsSerializing,IsERET);
              }
              format CP0TLB {
                0x01: tlbr({{
                    MipsISA::PTE *PTEntry = xc->tcBase()->getITBPtr()->getEntry(Index & 0x7FFFFFFF);
                    if(PTEntry == NULL)
                      {
                        fatal("Invalid PTE Entry received on a TLBR instruction\n");
                      }
                    /* Setup PageMask */
                    PageMask = (PTEntry->Mask << 11); // If 1KB pages are not enabled, a read of PageMask must return 0b00 in bits 12, 11
                    /* Setup EntryHi */
                    EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid));
                    /* Setup Entry Lo0 */
                    EntryLo0 = ((PTEntry->PFN0 << 6) | (PTEntry->C0 << 3) | (PTEntry->D0 << 2) | (PTEntry->V0 << 1) | PTEntry->G);
                    /* Setup Entry Lo1 */
                    EntryLo1 = ((PTEntry->PFN1 << 6) | (PTEntry->C1 << 3) | (PTEntry->D1 << 2) | (PTEntry->V1 << 1) | PTEntry->G);
                }}); // Need to hook up to TLB

                0x02: tlbwi({{
                                //Create PTE
                                MipsISA::PTE NewEntry;
                                //Write PTE
                                NewEntry.Mask = (Addr)(PageMask >> 11);
                                NewEntry.VPN = (Addr)(EntryHi >> 11);
                                /*  PageGrain _ ESP                    Config3 _ SP */
                                if(((PageGrain>>28) & 1) == 0 || ((Config3>>4)&1) ==0) {
                                  NewEntry.Mask |= 0x3; // If 1KB pages are *NOT* enabled, lowest bits of the mask are 0b11 for TLB writes
                                  NewEntry.VPN &= 0xFFFFFFFC; // Reset bits 0 and 1 if 1KB pages are not enabled
                                }
                                NewEntry.asid = (uint8_t)(EntryHi & 0xFF);

                                NewEntry.PFN0 = (Addr)(EntryLo0 >> 6);
                                NewEntry.PFN1 = (Addr)(EntryLo1 >> 6);
                                NewEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
                                NewEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
                                NewEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
                                NewEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
                                NewEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
                                NewEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
                                NewEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
                                /* Now, compute the AddrShiftAmount and OffsetMask - TLB optimizations */
                                /* Addr Shift Amount for 1KB or larger pages */
                                //	    warn("PTE->Mask: %x\n",pte->Mask);
                                if((NewEntry.Mask & 0xFFFF) == 3){
                                  NewEntry.AddrShiftAmount = 12;
                                } else if((NewEntry.Mask & 0xFFFF) == 0x0000){
                                  NewEntry.AddrShiftAmount = 10;
                                } else if((NewEntry.Mask & 0xFFFC) == 0x000C){
                                  NewEntry.AddrShiftAmount = 14;
                                } else if((NewEntry.Mask & 0xFFF0) == 0x0030){
                                  NewEntry.AddrShiftAmount = 16;
                                } else if((NewEntry.Mask & 0xFFC0) == 0x00C0){
                                  NewEntry.AddrShiftAmount = 18;
                                } else if((NewEntry.Mask & 0xFF00) == 0x0300){
                                  NewEntry.AddrShiftAmount = 20;
                                } else if((NewEntry.Mask & 0xFC00) == 0x0C00){
                                  NewEntry.AddrShiftAmount = 22;
                                } else if((NewEntry.Mask & 0xF000) == 0x3000){
                                  NewEntry.AddrShiftAmount = 24;
                                } else if((NewEntry.Mask & 0xC000) == 0xC000){
                                  NewEntry.AddrShiftAmount = 26;
                                } else if((NewEntry.Mask & 0x30000) == 0x30000){
                                  NewEntry.AddrShiftAmount = 28;
                                } else {
                                  fatal("Invalid Mask Pattern Detected!\n");
                                }
                                NewEntry.OffsetMask = ((1<<NewEntry.AddrShiftAmount)-1);

                                MipsISA::TLB *Ptr=xc->tcBase()->getITBPtr();
                                MiscReg c3=xc->readMiscReg(MipsISA::Config3);
                                MiscReg pg=xc->readMiscReg(MipsISA::PageGrain);
                                int SP=0;
                                if(bits(c3,Config3_SP)==1 && bits(pg,PageGrain_ESP)==1){
                                  SP=1;
                                }
                                Ptr->insertAt(NewEntry,Index & 0x7FFFFFFF,SP);
              }});
                0x06: tlbwr({{
                                //Create PTE
                                MipsISA::PTE NewEntry;
                                //Write PTE
                                NewEntry.Mask = (Addr)(PageMask >> 11);
                                NewEntry.VPN = (Addr)(EntryHi >> 11);
                                /*  PageGrain _ ESP                    Config3 _ SP */
                                if(((PageGrain>>28) & 1) == 0 || ((Config3>>4)&1) ==0) {
                                  NewEntry.Mask |= 0x3; // If 1KB pages are *NOT* enabled, lowest bits of the mask are 0b11 for TLB writes
                                  NewEntry.VPN &= 0xFFFFFFFC; // Reset bits 0 and 1 if 1KB pages are not enabled
                                }
                                NewEntry.asid = (uint8_t)(EntryHi & 0xFF);

                                NewEntry.PFN0 = (Addr)(EntryLo0 >> 6);
                                NewEntry.PFN1 = (Addr)(EntryLo1 >> 6);
                                NewEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
                                NewEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
                                NewEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
                                NewEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
                                NewEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
                                NewEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
                                NewEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
                                /* Now, compute the AddrShiftAmount and OffsetMask - TLB optimizations */
                                /* Addr Shift Amount for 1KB or larger pages */
                                //	    warn("PTE->Mask: %x\n",pte->Mask);
                                if((NewEntry.Mask & 0xFFFF) == 3){
                                  NewEntry.AddrShiftAmount = 12;
                                } else if((NewEntry.Mask & 0xFFFF) == 0x0000){
                                  NewEntry.AddrShiftAmount = 10;
                                } else if((NewEntry.Mask & 0xFFFC) == 0x000C){
                                  NewEntry.AddrShiftAmount = 14;
                                } else if((NewEntry.Mask & 0xFFF0) == 0x0030){
                                  NewEntry.AddrShiftAmount = 16;
                                } else if((NewEntry.Mask & 0xFFC0) == 0x00C0){
                                  NewEntry.AddrShiftAmount = 18;
                                } else if((NewEntry.Mask & 0xFF00) == 0x0300){
                                  NewEntry.AddrShiftAmount = 20;
                                } else if((NewEntry.Mask & 0xFC00) == 0x0C00){
                                  NewEntry.AddrShiftAmount = 22;
                                } else if((NewEntry.Mask & 0xF000) == 0x3000){
                                  NewEntry.AddrShiftAmount = 24;
                                } else if((NewEntry.Mask & 0xC000) == 0xC000){
                                  NewEntry.AddrShiftAmount = 26;
                                } else if((NewEntry.Mask & 0x30000) == 0x30000){
                                  NewEntry.AddrShiftAmount = 28;
                                } else {
                                  fatal("Invalid Mask Pattern Detected!\n");
                                }
                                NewEntry.OffsetMask = ((1<<NewEntry.AddrShiftAmount)-1);

                                MipsISA::TLB *Ptr=xc->tcBase()->getITBPtr();
                                MiscReg c3=xc->readMiscReg(MipsISA::Config3);
                                MiscReg pg=xc->readMiscReg(MipsISA::PageGrain);
                                int SP=0;
                                if(bits(c3,Config3_SP)==1 && bits(pg,PageGrain_ESP)==1){
                                  SP=1;
                                }
                                Ptr->insertAt(NewEntry,Random,SP);
                }});

                0x08: tlbp({{
                               int TLB_Index;
                               Addr VPN;
                               if(PageGrain_ESP == 1 && Config3_SP ==1){
                                 VPN = EntryHi >> 11;
                               } else {
                                 VPN = ((EntryHi >> 11) & 0xFFFFFFFC); // Mask off lower 2 bits
                               }
                               TLB_Index = xc->tcBase()->getITBPtr()->probeEntry(VPN,EntryHi_ASID);
                               if(TLB_Index != -1){  // Check TLB for entry matching EntryHi
                                 Index=TLB_Index;
                                 //			    warn("\ntlbp: Match Found!\n");
                               } else {// else, set Index = 1<<31
                                 Index = (1<<31);
                               }
                        }});
              }
              format CP0Unimpl {
                0x20: wait();
              }
               default: CP0Unimpl::unknown();

            }
        }

        //Table A-13 MIPS32 COP1 Encoding of rs Field
        0x1: decode RS_MSB {

            0x0: decode RS_HI {
                0x0: decode RS_LO {
                    format CP1Control {
                        0x0: mfc1 ({{ Rt.uw = Fs.uw; }});

                        0x2: cfc1({{
                            switch (FS)
                            {
                              case 0:
                                Rt = FIR;
                                break;
                              case 25:
                                Rt = 0 | (FCSR & 0xFE000000) >> 24 | (FCSR & 0x00800000) >> 23;
                                break;
                              case 26:
                                Rt = 0 | (FCSR & 0x0003F07C);
                                break;
                              case 28:
                                Rt = 0 | (FCSR & 0x00000F80) | (FCSR & 0x01000000) >> 21 | (FCSR & 0x00000003);
                                break;
                              case 31:
                                Rt = FCSR;
                                break;
                              default:
                                warn("FP Control Value (%d) Not Valid");
                            }
                            //			    warn("FCSR: %x, FS: %d, FIR: %x, Rt: %x\n",FCSR, FS, FIR, Rt);
                        }});

                        0x3: mfhc1({{ Rt.uw = Fs.ud<63:32>;}});

                        0x4: mtc1 ({{ Fs.uw = Rt.uw;       }});

                        0x6: ctc1({{
                            switch (FS)
                            {
                              case 25:
                                FCSR = 0 | (Rt.uw<7:1> << 25) // move 31...25
                                    | (FCSR & 0x01000000) // bit 24
                                    | (FCSR & 0x004FFFFF);// bit 22...0
                                break;

                              case 26:
                                FCSR = 0 | (FCSR & 0xFFFC0000) // move 31...18
                                    | Rt.uw<17:12> << 12           // bit 17...12
                                    | (FCSR & 0x00000F80) << 7// bit 11...7
                                    | Rt.uw<6:2> << 2              // bit 6...2
                                    | (FCSR & 0x00000002);     // bit 1...0
                                break;

                              case 28:
                                FCSR = 0 | (FCSR & 0xFE000000) // move 31...25
                                    | Rt.uw<2:2> << 24       // bit 24
                                    | (FCSR & 0x00FFF000) << 23// bit 23...12
                                    | Rt.uw<11:7> << 7       // bit 24
                                    | (FCSR & 0x000007E)
                                    | Rt.uw<1:0>;// bit 22...0
                                break;

                              case 31:
                                FCSR  = Rt.uw;
                                break;

                              default:
                                panic("FP Control Value (%d) Not Available. Ignoring Access to"
                                      "Floating Control Status Register", FS);
                            }
                        }});

                        0x7: mthc1({{
                             uint64_t fs_hi = Rt.uw;
                             uint64_t fs_lo = Fs.ud & 0x0FFFFFFFF;
                             Fs.ud = (fs_hi << 32) | fs_lo;
                        }});

                    }
                    format CP1Unimpl {
                      0x1: dmfc1();
                      0x5: dmtc1();
                    }
                   }

                0x1:
                   decode RS_LO {
                     0x0:
                     decode ND {
                       format Branch {
                         0x0: decode TF {
                           0x0: bc1f({{ cond = getCondCode(FCSR, BRANCH_CC) == 0;
                                       }});
                           0x1: bc1t({{ cond = getCondCode(FCSR, BRANCH_CC) == 1;
                                       }});
                         }
                         0x1: decode TF {
                           0x0: bc1fl({{ cond = getCondCode(FCSR, BRANCH_CC) == 0;
                                        }}, Likely);
                           0x1: bc1tl({{ cond = getCondCode(FCSR, BRANCH_CC) == 1;
                                        }}, Likely);
                         }
                       }
                     }
                   format CP1Unimpl {
                     0x1: bc1any2();
                     0x2: bc1any4();
                     default: unknown();
                   }
                   }
            }

            0x1: decode RS_HI {
                0x2: decode RS_LO {
                    //Table A-14 MIPS32 COP1 Encoding of Function Field When rs=S
                    //(( single-precision floating point))
                    0x0: decode FUNCTION_HI {
                        0x0: decode FUNCTION_LO {
                            format FloatOp {
                                0x0: add_s({{ Fd.sf = Fs.sf + Ft.sf;}});
                                0x1: sub_s({{ Fd.sf = Fs.sf - Ft.sf;}});
                                0x2: mul_s({{ Fd.sf = Fs.sf * Ft.sf;}});
                                0x3: div_s({{ Fd.sf = Fs.sf / Ft.sf;}});
                                0x4: sqrt_s({{ Fd.sf = sqrt(Fs.sf);}});
                                0x5: abs_s({{ Fd.sf = fabs(Fs.sf);}});
                                0x7: neg_s({{ Fd.sf = -Fs.sf;}});
                            }

                            0x6: BasicOp::mov_s({{ Fd.sf = Fs.sf;}});
                        }

                        0x1: decode FUNCTION_LO {
                            format FloatConvertOp {
                                0x0: round_l_s({{ val = Fs.sf; }}, ToLong,
                                               Round);
                                0x1: trunc_l_s({{ val = Fs.sf; }}, ToLong,
                                               Trunc);
                                0x2: ceil_l_s({{ val = Fs.sf; }}, ToLong,
                                               Ceil);
                                0x3: floor_l_s({{ val = Fs.sf; }}, ToLong,
                                               Floor);
                                0x4: round_w_s({{ val = Fs.sf; }}, ToWord,
                                               Round);
                                0x5: trunc_w_s({{ val = Fs.sf; }}, ToWord,
                                               Trunc);
                                0x6: ceil_w_s({{ val = Fs.sf; }}, ToWord,
                                               Ceil);
                                0x7: floor_w_s({{ val = Fs.sf; }}, ToWord,
                                               Floor);
                            }
                        }

                        0x2: decode FUNCTION_LO {
                            0x1: decode MOVCF {
                                format BasicOp {
                                    0x0: movf_s({{ Fd = (getCondCode(FCSR,CC) == 0) ? Fs : Fd; }});
                                    0x1: movt_s({{ Fd = (getCondCode(FCSR,CC) == 1) ? Fs : Fd; }});
                                }
                            }

                            format BasicOp {
                                0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }});
                                0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }});
                            }

                            format FloatOp {
                                0x5: recip_s({{ Fd = 1 / Fs; }});
                                0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs);}});
                            }
                            format CP1Unimpl {
                              default: unknown();
                            }
                        }
                        0x3: CP1Unimpl::unknown();

                        0x4: decode FUNCTION_LO {
                            format FloatConvertOp {
                                0x1: cvt_d_s({{ val = Fs.sf; }}, ToDouble);
                                0x4: cvt_w_s({{ val = Fs.sf; }}, ToWord);
                                0x5: cvt_l_s({{ val = Fs.sf; }}, ToLong);
                            }

                            0x6: FloatOp::cvt_ps_s({{
                                    Fd.ud = (uint64_t) Fs.uw << 32 |
                                            (uint64_t) Ft.uw;
                                }});
                            format CP1Unimpl {
                              default: unknown();
                            }
                        }
                        0x5: CP1Unimpl::unknown();

                        0x6: decode FUNCTION_LO {
                            format FloatCompareOp {
                                0x0: c_f_s({{ cond = 0; }}, SinglePrecision,
                                           UnorderedFalse);
                                0x1: c_un_s({{ cond = 0; }}, SinglePrecision,
                                            UnorderedTrue);
                                0x2: c_eq_s({{ cond = (Fs.sf == Ft.sf); }},
                                            UnorderedFalse);
                                0x3: c_ueq_s({{ cond = (Fs.sf == Ft.sf); }},
                                             UnorderedTrue);
                                0x4: c_olt_s({{ cond = (Fs.sf < Ft.sf);	}},
                                             UnorderedFalse);
                                0x5: c_ult_s({{ cond = (Fs.sf < Ft.sf); }},
                                             UnorderedTrue);
                                0x6: c_ole_s({{ cond = (Fs.sf <= Ft.sf); }},
                                             UnorderedFalse);
                                0x7: c_ule_s({{ cond = (Fs.sf <= Ft.sf); }},
                                             UnorderedTrue);
                            }
                        }

                        0x7: decode FUNCTION_LO {
                            format FloatCompareOp {
                                0x0: c_sf_s({{ cond = 0; }}, SinglePrecision,
                                            UnorderedFalse, QnanException);
                                0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision,
                                              UnorderedTrue, QnanException);
                                0x2: c_seq_s({{ cond = (Fs.sf == Ft.sf);}},
                                             UnorderedFalse, QnanException);
                                0x3: c_ngl_s({{ cond = (Fs.sf == Ft.sf); }},
                                             UnorderedTrue, QnanException);
                                0x4: c_lt_s({{ cond = (Fs.sf < Ft.sf); }},
                                            UnorderedFalse, QnanException);
                                0x5: c_nge_s({{ cond = (Fs.sf < Ft.sf); }},
                                             UnorderedTrue, QnanException);
                                0x6: c_le_s({{ cond = (Fs.sf <= Ft.sf); }},
                                            UnorderedFalse, QnanException);
                                0x7: c_ngt_s({{ cond = (Fs.sf <= Ft.sf); }},
                                             UnorderedTrue, QnanException);
                            }
                        }
                    }

                    //Table A-15 MIPS32 COP1 Encoding of Function Field When rs=D
                    0x1: decode FUNCTION_HI {
                        0x0: decode FUNCTION_LO {
                            format FloatOp {
                                0x0: add_d({{ Fd.df = Fs.df + Ft.df; }});
                                0x1: sub_d({{ Fd.df = Fs.df - Ft.df; }});
                                0x2: mul_d({{ Fd.df = Fs.df * Ft.df; }});
                                0x3: div_d({{ Fd.df = Fs.df / Ft.df; }});
                                0x4: sqrt_d({{ Fd.df = sqrt(Fs.df);  }});
                                0x5: abs_d({{ Fd.df = fabs(Fs.df);   }});
                                0x7: neg_d({{ Fd.df = -1 * Fs.df;    }});
                            }

                            0x6: BasicOp::mov_d({{ Fd.df = Fs.df;    }});
                        }

                        0x1: decode FUNCTION_LO {
                            format FloatConvertOp {
                                0x0: round_l_d({{ val = Fs.df; }}, ToLong,
                                               Round);
                                0x1: trunc_l_d({{ val = Fs.df; }}, ToLong,
                                               Trunc);
                                0x2: ceil_l_d({{ val = Fs.df; }}, ToLong,
                                               Ceil);
                                0x3: floor_l_d({{ val = Fs.df; }}, ToLong,
                                               Floor);
                                0x4: round_w_d({{ val = Fs.df; }}, ToWord,
                                               Round);
                                0x5: trunc_w_d({{ val = Fs.df; }}, ToWord,
                                               Trunc);
                                0x6: ceil_w_d({{ val = Fs.df; }}, ToWord,
                                               Ceil);
                                0x7: floor_w_d({{ val = Fs.df; }}, ToWord,
                                               Floor);
                            }
                        }

                        0x2: decode FUNCTION_LO {
                            0x1: decode MOVCF {
                                format BasicOp {
                                    0x0: movf_d({{ Fd.df = (getCondCode(FCSR,CC) == 0) ?
                                                       Fs.df : Fd.df;
                                                }});
                                    0x1: movt_d({{ Fd.df = (getCondCode(FCSR,CC) == 1) ?
                                                       Fs.df : Fd.df;
                                                }});
                                }
                            }

                            format BasicOp {
                                0x2: movz_d({{ Fd.df = (Rt == 0) ? Fs.df : Fd.df; }});
                                0x3: movn_d({{ Fd.df = (Rt != 0) ? Fs.df : Fd.df; }});
                            }

                            format FloatOp {
                                0x5: recip_d({{ Fd.df = 1 / Fs.df }});
                                0x6: rsqrt_d({{ Fd.df = 1 / sqrt(Fs.df) }});
                            }
                            format CP1Unimpl {
                              default: unknown();
                            }

                        }
                        0x4: decode FUNCTION_LO {
                            format FloatConvertOp {
                                0x0: cvt_s_d({{ val = Fs.df; }}, ToSingle);
                                0x4: cvt_w_d({{ val = Fs.df; }}, ToWord);
                                0x5: cvt_l_d({{ val = Fs.df; }}, ToLong);
                            }
                           default: CP1Unimpl::unknown();
                        }

                        0x6: decode FUNCTION_LO {
                            format FloatCompareOp {
                                0x0: c_f_d({{ cond = 0; }}, DoublePrecision,
                                           UnorderedFalse);
                                0x1: c_un_d({{ cond = 0; }}, DoublePrecision,
                                            UnorderedTrue);
                                0x2: c_eq_d({{ cond = (Fs.df == Ft.df); }},
                                            UnorderedFalse);
                                0x3: c_ueq_d({{ cond = (Fs.df == Ft.df); }},
                                             UnorderedTrue);
                                0x4: c_olt_d({{ cond = (Fs.df < Ft.df);	}},
                                             UnorderedFalse);
                                0x5: c_ult_d({{ cond = (Fs.df < Ft.df); }},
                                             UnorderedTrue);
                                0x6: c_ole_d({{ cond = (Fs.df <= Ft.df); }},
                                             UnorderedFalse);
                                0x7: c_ule_d({{ cond = (Fs.df <= Ft.df); }},
                                             UnorderedTrue);
                            }
                        }

                        0x7: decode FUNCTION_LO {
                            format FloatCompareOp {
                                0x0: c_sf_d({{ cond = 0; }}, DoublePrecision,
                                            UnorderedFalse, QnanException);
                                0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision,
                                              UnorderedTrue, QnanException);
                                0x2: c_seq_d({{ cond = (Fs.df == Ft.df); }},
                                             UnorderedFalse, QnanException);
                                0x3: c_ngl_d({{ cond = (Fs.df == Ft.df); }},
                                             UnorderedTrue, QnanException);
                                0x4: c_lt_d({{ cond = (Fs.df < Ft.df); }},
                                            UnorderedFalse, QnanException);
                                0x5: c_nge_d({{ cond = (Fs.df < Ft.df); }},
                                             UnorderedTrue, QnanException);
                                0x6: c_le_d({{ cond = (Fs.df <= Ft.df); }},
                                            UnorderedFalse, QnanException);
                                0x7: c_ngt_d({{ cond = (Fs.df <= Ft.df); }},
                                             UnorderedTrue, QnanException);
                            }
                        }
                       default: CP1Unimpl::unknown();
                    }
                    0x2: CP1Unimpl::unknown();
                    0x3: CP1Unimpl::unknown();
                    0x7: CP1Unimpl::unknown();

                    //Table A-16 MIPS32 COP1 Encoding of Function Field When rs=W
                    0x4: decode FUNCTION {
                        format FloatConvertOp {
                            0x20: cvt_s_w({{ val = Fs.uw; }}, ToSingle);
                            0x21: cvt_d_w({{ val = Fs.uw; }}, ToDouble);
                            0x26: CP1Unimpl::cvt_ps_w();
                        }
                       default: CP1Unimpl::unknown();
                    }

                    //Table A-16 MIPS32 COP1 Encoding of Function Field When rs=L1
                    //Note: "1. Format type L is legal only if 64-bit floating point operations
                    //are enabled."
                    0x5: decode FUNCTION_HI {
                        format FloatConvertOp {
                            0x20: cvt_s_l({{ val = Fs.ud; }}, ToSingle);
                            0x21: cvt_d_l({{ val = Fs.ud; }}, ToDouble);
                            0x26: CP1Unimpl::cvt_ps_l();
                        }
                       default: CP1Unimpl::unknown();
                    }

                    //Table A-17 MIPS64 COP1 Encoding of Function Field When rs=PS1
                    //Note: "1. Format type PS is legal only if 64-bit floating point operations
                    //are enabled. "
                    0x6: decode FUNCTION_HI {
                        0x0: decode FUNCTION_LO {
                            format Float64Op {
                                0x0: add_ps({{
                                    Fd1.sf = Fs1.sf + Ft2.sf;
                                    Fd2.sf = Fs2.sf + Ft2.sf;
                                }});
                                0x1: sub_ps({{
                                    Fd1.sf = Fs1.sf - Ft2.sf;
                                    Fd2.sf = Fs2.sf - Ft2.sf;
                                }});
                                0x2: mul_ps({{
                                    Fd1.sf = Fs1.sf * Ft2.sf;
                                    Fd2.sf = Fs2.sf * Ft2.sf;
                                }});
                                0x5: abs_ps({{
                                    Fd1.sf = fabs(Fs1.sf);
                                    Fd2.sf = fabs(Fs2.sf);
                                }});
                                0x6: mov_ps({{
                                    Fd1.sf = Fs1.sf;
                                    Fd2.sf = Fs2.sf;
                                }});
                                0x7: neg_ps({{
                                    Fd1.sf = -(Fs1.sf);
                                    Fd2.sf = -(Fs2.sf);
                                }});
                            default: CP1Unimpl::unknown();
                            }
                        }
                        0x1: CP1Unimpl::unknown();
                        0x2: decode FUNCTION_LO {
                            0x1: decode MOVCF {
                                format Float64Op {
                                    0x0: movf_ps({{
                                        Fd1 = (getCondCode(FCSR, CC) == 0) ?
                                            Fs1 : Fd1;
                                        Fd2 = (getCondCode(FCSR, CC+1) == 0) ?
                                            Fs2 : Fd2;
                                    }});
                                    0x1: movt_ps({{
                                        Fd2 = (getCondCode(FCSR, CC) == 1) ?
                                            Fs1 : Fd1;
                                        Fd2 = (getCondCode(FCSR, CC+1) == 1) ?
                                            Fs2 : Fd2;
                                    }});
                                }
                            }

                            format Float64Op {
                                0x2: movz_ps({{
                                    Fd1 = (getCondCode(FCSR, CC) == 0) ?
                                        Fs1 : Fd1;
                                    Fd2 = (getCondCode(FCSR, CC) == 0) ?
                                        Fs2 : Fd2;
                                }});
                                0x3: movn_ps({{
                                    Fd1 = (getCondCode(FCSR, CC) == 1) ?
                                        Fs1 : Fd1;
                                    Fd2 = (getCondCode(FCSR, CC) == 1) ?
                                        Fs2 : Fd2;
                                }});
                            }
                           default: CP1Unimpl::unknown();

                        }
                        0x3: CP1Unimpl::unknown();
                        0x4: decode FUNCTION_LO {
                            0x0: FloatOp::cvt_s_pu({{ Fd.sf = Fs2.sf; }});
                            default: CP1Unimpl::unknown();
                        }

                        0x5: decode FUNCTION_LO {
                            0x0: FloatOp::cvt_s_pl({{ Fd.sf = Fs1.sf; }});

                            format Float64Op {
                                0x4: pll({{ Fd.ud = (uint64_t) Fs1.uw << 32 |
                                                    Ft1.uw;
                                         }});
                                0x5: plu({{ Fd.ud = (uint64_t) Fs1.uw << 32 |
                                                    Ft2.uw;
                                         }});
                                0x6: pul({{ Fd.ud = (uint64_t) Fs2.uw << 32 |
                                                    Ft1.uw;
                                         }});
                                0x7: puu({{ Fd.ud = (uint64_t) Fs2.uw << 32 |
                                                    Ft2.uw;
                                         }});
                            }
                            default: CP1Unimpl::unknown();
                        }

                        0x6: decode FUNCTION_LO {
                            format FloatPSCompareOp {
                                0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
                                            UnorderedFalse);
                                0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
                                             UnorderedTrue);
                                0x2: c_eq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
                                             {{ cond2 = (Fs2.sf == Ft2.sf); }},
                                             UnorderedFalse);
                                0x3: c_ueq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
                                              {{ cond2 = (Fs2.sf == Ft2.sf); }},
                                              UnorderedTrue);
                                0x4: c_olt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
                                              {{ cond2 = (Fs2.sf < Ft2.sf); }},
                                              UnorderedFalse);
                                0x5: c_ult_ps({{ cond1 = (Fs.sf < Ft.sf); }},
                                              {{ cond2 = (Fs2.sf < Ft2.sf); }},
                                              UnorderedTrue);
                                0x6: c_ole_ps({{ cond1 = (Fs.sf <= Ft.sf); }},
                                              {{ cond2 = (Fs2.sf <= Ft2.sf); }},
                                              UnorderedFalse);
                                0x7: c_ule_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
                                              {{ cond2 = (Fs2.sf <= Ft2.sf); }},
                                              UnorderedTrue);
                            }
                        }

                        0x7: decode FUNCTION_LO {
                            format FloatPSCompareOp {
                                0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
                                             UnorderedFalse, QnanException);
                                0x1: c_ngle_ps({{ cond1 = 0; }},
                                               {{ cond2 = 0; }},
                                               UnorderedTrue, QnanException);
                                0x2: c_seq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
                                              {{ cond2 = (Fs2.sf == Ft2.sf); }},
                                              UnorderedFalse, QnanException);
                                0x3: c_ngl_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
                                              {{ cond2 = (Fs2.sf == Ft2.sf); }},
                                              UnorderedTrue, QnanException);
                                0x4: c_lt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
                                             {{ cond2 = (Fs2.sf < Ft2.sf); }},
                                             UnorderedFalse, QnanException);
                                0x5: c_nge_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
                                              {{ cond2 = (Fs2.sf < Ft2.sf); }},
                                              UnorderedTrue, QnanException);
                                0x6: c_le_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
                                             {{ cond2 = (Fs2.sf <= Ft2.sf); }},
                                             UnorderedFalse, QnanException);
                                0x7: c_ngt_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
                                              {{ cond2 = (Fs2.sf <= Ft2.sf); }},
                                              UnorderedTrue, QnanException);
                            }
                        }
                    }
                }
               default: CP1Unimpl::unknown();
            }
        }

        //Table A-19 MIPS32 COP2 Encoding of rs Field
        0x2: decode RS_MSB {
            format CP2Unimpl {
                0x0: decode RS_HI {
                    0x0: decode RS_LO {
                        0x0: mfc2();
                        0x2: cfc2();
                        0x3: mfhc2();
                        0x4: mtc2();
                        0x6: ctc2();
                        0x7: mftc2();
                       default: unknown();
                    }

                    0x1: decode ND {
                        0x0: decode TF {
                            0x0: bc2f();
                            0x1: bc2t();
                           default: unknown();
                        }

                        0x1: decode TF {
                            0x0: bc2fl();
                            0x1: bc2tl();
                           default: unknown();
                        }
                       default: unknown();

                       }
              default: unknown();

              }
            default: unknown();
            }
        }

        //Table A-20 MIPS64 COP1X Encoding of Function Field 1
        //Note: "COP1X instructions are legal only if 64-bit floating point
        //operations are enabled."
        0x3: decode FUNCTION_HI {
            0x0: decode FUNCTION_LO {
                format LoadIndexedMemory {
                    0x0: lwxc1({{ Fd.uw = Mem.uw;}});
                    0x1: ldxc1({{ Fd.ud = Mem.ud;}});
                    0x5: luxc1({{ Fd.ud = Mem.ud;}},
                               {{ EA = (Rs + Rt) & ~7; }});
                }
            }

            0x1: decode FUNCTION_LO {
                format StoreIndexedMemory {
                    0x0: swxc1({{ Mem.uw = Fs.uw;}});
                    0x1: sdxc1({{ Mem.ud = Fs.ud;}});
                    0x5: suxc1({{ Mem.ud = Fs.ud;}},
                               {{ EA = (Rs + Rt) & ~7; }});
                }

                0x7: Prefetch::prefx({{ EA = Rs + Rt; }});
            }

            0x3: decode FUNCTION_LO {
                0x6: Float64Op::alnv_ps({{ if (Rs<2:0> == 0) {
                                               Fd.ud = Fs.ud;
                                           } else if (Rs<2:0> == 4) {
                                             #if BYTE_ORDER == BIG_ENDIAN
                                               Fd.ud = Fs.ud<31:0> << 32 |
                                                       Ft.ud<63:32>;
                                             #elif BYTE_ORDER == LITTLE_ENDIAN
                                               Fd.ud = Ft.ud<31:0> << 32 |
                                                       Fs.ud<63:32>;
                                             #endif
                                           } else {
                                               Fd.ud = Fd.ud;
                                           }
                                        }});
            }

            format FloatAccOp {
                0x4: decode FUNCTION_LO {
                    0x0: madd_s({{ Fd.sf = (Fs.sf * Ft.sf) + Fr.sf; }});
                    0x1: madd_d({{ Fd.df = (Fs.df * Ft.df) + Fr.df; }});
                    0x6: madd_ps({{
                        Fd1.sf = (Fs1.df * Ft1.df) + Fr1.df;
                        Fd2.sf = (Fs2.df * Ft2.df) + Fr2.df;
                    }});
                }

                0x5: decode FUNCTION_LO {
                    0x0: msub_s({{ Fd.sf = (Fs.sf * Ft.sf) - Fr.sf; }});
                    0x1: msub_d({{ Fd.df = (Fs.df * Ft.df) - Fr.df; }});
                    0x6: msub_ps({{
                        Fd1.sf = (Fs1.df * Ft1.df) - Fr1.df;
                        Fd2.sf = (Fs2.df * Ft2.df) - Fr2.df;
                    }});
                }

                0x6: decode FUNCTION_LO {
                    0x0: nmadd_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
                    0x1: nmadd_d({{ Fd.df = (-1 * Fs.df * Ft.df) + Fr.df; }});
                    0x6: nmadd_ps({{
                        Fd1.sf = -((Fs1.df * Ft1.df) + Fr1.df);
                        Fd2.sf = -((Fs2.df * Ft2.df) + Fr2.df);
                    }});
                }

                0x7: decode FUNCTION_LO {
                    0x0: nmsub_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
                    0x1: nmsub_d({{ Fd.df = (-1 * Fs.df * Ft.df) - Fr.df; }});
                    0x6: nmsub_ps({{
                        Fd1.sf = -((Fs1.df * Ft1.df) - Fr1.df);
                        Fd2.sf = -((Fs2.df * Ft2.df) - Fr2.df);
                    }});
                }

            }
        }

        format Branch {
            0x4: beql({{ cond = (Rs.sw == Rt.sw); }}, Likely);
            0x5: bnel({{ cond = (Rs.sw != Rt.sw); }}, Likely);
            0x6: blezl({{ cond = (Rs.sw <= 0); }}, Likely);
            0x7: bgtzl({{ cond = (Rs.sw > 0); }}, Likely);
        }
    }

    0x3: decode OPCODE_LO {
        //Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
        0x4: decode FUNCTION_HI {
            0x0: decode FUNCTION_LO {
                0x2: IntOp::mul({{ int64_t temp1 = Rs.sd * Rt.sd;
                                   Rd.sw = temp1<31:0>;
                                }}, IntMultOp);

                format HiLoRdSelValOp {
                  0x0: madd({{ val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) + (Rs.sd * Rt.sd); }}, IntMultOp);
                    0x1: maddu({{ val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) + (Rs.ud * Rt.ud); }}, IntMultOp);
                    0x4: msub({{ val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) - (Rs.sd * Rt.sd); }}, IntMultOp);
                    0x5: msubu({{ val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) - (Rs.ud * Rt.ud); }}, IntMultOp);
                }
            }

            0x4: decode FUNCTION_LO {
                format BasicOp {
                    0x0: clz({{ int cnt = 32;
                          for (int idx = 31; idx >= 0; idx--) {
                              if( Rs<idx:idx> == 1) {
                                  cnt = 31 - idx;
                                  break;
                              }
                          }
                          Rd.uw = cnt;
                       }});
                    0x1: clo({{ int cnt = 32;
                          for (int idx = 31; idx >= 0; idx--) {
                              if( Rs<idx:idx> == 0) {
                                  cnt = 31 - idx;
                                  break;
                              }
                          }
                          Rd.uw = cnt;
                        }});
                }
            }

            0x7: decode FUNCTION_LO {
                0x7: FailUnimpl::sdbbp();
            }
        }

        //Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2
        //of the Architecture
        0x7: decode FUNCTION_HI {
            0x0: decode FUNCTION_LO {
                format BasicOp {
                    0x0: ext({{ Rt.uw = bits(Rs.uw, MSB+LSB, LSB); }});
                    0x4: ins({{ Rt.uw = bits(Rt.uw, 31, MSB+1) << (MSB+1) |
                                        bits(Rs.uw, MSB-LSB, 0) << LSB |
                                        bits(Rt.uw, LSB-1, 0);
                             }});
                }
            }

            0x1: decode FUNCTION_LO {
                format MT_Control {
                    0x0: fork({{ forkThread(xc->tcBase(), fault, RD, Rs, Rt); }},
                              UserMode);
                    0x1: yield({{ Rd.sw = yieldThread(xc->tcBase(), fault, Rs.sw, YQMask); }},
                               UserMode);
                }

                //Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL)
                0x2: decode OP_HI {
                    0x0: decode OP_LO {
                        format LoadIndexedMemory {
                            0x0: lwx({{ Rd.sw = Mem.sw; }});
                            0x4: lhx({{ Rd.sw = Mem.sh; }});
                            0x6: lbux({{ Rd.uw = Mem.ub; }});
                        }
                    }
                }
                0x4: DspIntOp::insv({{ int pos = dspctl<5:0>;
                                       int size = dspctl<12:7>-1;
                                       Rt.uw = insertBits( Rt.uw, pos+size, pos, Rs.uw<size:0> ); }});
            }

            0x2: decode FUNCTION_LO {

                //Table 5-5 MIPS32 ADDU.QB Encoding of the op Field (DSP ASE MANUAL)
                0x0: decode OP_HI {
                    0x0: decode OP_LO {
                        format DspIntOp {
                            0x0: addu_qb({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                            NOSATURATE, UNSIGNED, &dspctl ); }});
                            0x1: subu_qb({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                            NOSATURATE, UNSIGNED, &dspctl ); }});
                            0x4: addu_s_qb({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                              SATURATE, UNSIGNED, &dspctl ); }});
                            0x5: subu_s_qb({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                              SATURATE, UNSIGNED, &dspctl ); }});
                            0x6: muleu_s_ph_qbl({{ Rd.uw = dspMuleu( Rs.uw, Rt.uw,
                                                                     MODE_L, &dspctl ); }}, IntMultOp);
                            0x7: muleu_s_ph_qbr({{ Rd.uw = dspMuleu( Rs.uw, Rt.uw,
                                                                     MODE_R, &dspctl ); }}, IntMultOp);
                        }
                    }
                    0x1: decode OP_LO {
                        format DspIntOp {
                            0x0: addu_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                            NOSATURATE, UNSIGNED, &dspctl ); }});
                            0x1: subu_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                            NOSATURATE, UNSIGNED, &dspctl ); }});
                            0x2: addq_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                            NOSATURATE, SIGNED, &dspctl ); }});
                            0x3: subq_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                            NOSATURATE, SIGNED, &dspctl ); }});
                            0x4: addu_s_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                              SATURATE, UNSIGNED, &dspctl ); }});
                            0x5: subu_s_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                              SATURATE, UNSIGNED, &dspctl ); }});
                            0x6: addq_s_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                              SATURATE, SIGNED, &dspctl ); }});
                            0x7: subq_s_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                              SATURATE, SIGNED, &dspctl ); }});
                        }
                    }
                    0x2: decode OP_LO {
                        format DspIntOp {
                            0x0: addsc({{ int64_t dresult;
                                          dresult = Rs.ud + Rt.ud;
                                          Rd.sw = dresult<31:0>;
                                          dspctl = insertBits( dspctl, 13, 13,
                                                               dresult<32:32> ); }});
                            0x1: addwc({{ int64_t dresult;
                                          dresult = Rs.sd + Rt.sd + dspctl<13:13>;
                                          Rd.sw = dresult<31:0>;
                                          if( dresult<32:32> != dresult<31:31> )
                                              dspctl = insertBits( dspctl, 20, 20, 1 ); }});
                            0x2: modsub({{ Rd.sw = (Rs.sw == 0) ? Rt.sw<23:8> : Rs.sw - Rt.sw<7:0>; }});
                            0x4: raddu_w_qb({{ Rd.uw = Rs.uw<31:24> + Rs.uw<23:16> +
                                                   Rs.uw<15:8> + Rs.uw<7:0>; }});
                            0x6: addq_s_w({{ Rd.sw = dspAdd( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                             SATURATE, SIGNED, &dspctl ); }});
                            0x7: subq_s_w({{ Rd.sw = dspSub( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                             SATURATE, SIGNED, &dspctl ); }});
                        }
                    }
                    0x3: decode OP_LO {
                        format DspIntOp {
                            0x4: muleq_s_w_phl({{ Rd.sw = dspMuleq( Rs.sw, Rt.sw,
                                                                    MODE_L, &dspctl ); }}, IntMultOp);
                            0x5: muleq_s_w_phr({{ Rd.sw = dspMuleq( Rs.sw, Rt.sw,
                                                                    MODE_R, &dspctl ); }}, IntMultOp);
                            0x6: mulq_s_ph({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                               SATURATE, NOROUND, &dspctl ); }}, IntMultOp);
                            0x7: mulq_rs_ph({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                                SATURATE, ROUND, &dspctl ); }}, IntMultOp);
                        }
                    }
                }

                //Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field (DSP ASE MANUAL)
                0x1: decode OP_HI {
                    0x0: decode OP_LO {
                        format DspIntOp {
                            0x0: cmpu_eq_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                       UNSIGNED, CMP_EQ, &dspctl ); }});
                            0x1: cmpu_lt_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                       UNSIGNED, CMP_LT, &dspctl ); }});
                            0x2: cmpu_le_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                       UNSIGNED, CMP_LE, &dspctl ); }});
                            0x3: pick_qb({{ Rd.uw = dspPick( Rs.uw, Rt.uw,
                                                             SIMD_FMT_QB, &dspctl ); }});
                            0x4: cmpgu_eq_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                                 UNSIGNED, CMP_EQ ); }});
                            0x5: cmpgu_lt_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                                 UNSIGNED, CMP_LT ); }});
                            0x6: cmpgu_le_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                                 UNSIGNED, CMP_LE ); }});
                        }
                    }
                    0x1: decode OP_LO {
                        format DspIntOp {
                            0x0: cmp_eq_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                      SIGNED, CMP_EQ, &dspctl ); }});
                            0x1: cmp_lt_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                      SIGNED, CMP_LT, &dspctl ); }});
                            0x2: cmp_le_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
                                                      SIGNED, CMP_LE, &dspctl ); }});
                            0x3: pick_ph({{ Rd.uw = dspPick( Rs.uw, Rt.uw,
                                                             SIMD_FMT_PH, &dspctl ); }});
                            0x4: precrq_qb_ph({{ Rd.uw = Rs.uw<31:24> << 24 |
                                                         Rs.uw<15:8> << 16 |
                                                         Rt.uw<31:24> << 8 |
                                                         Rt.uw<15:8>; }});
                            0x5: precr_qb_ph({{ Rd.uw = Rs.uw<23:16> << 24 |
                                                         Rs.uw<7:0> << 16 |
                                                         Rt.uw<23:16> << 8 |
                                                         Rt.uw<7:0>; }});
                            0x6: packrl_ph({{ Rd.uw = dspPack( Rs.uw, Rt.uw,
                                                               SIMD_FMT_PH ); }});
                            0x7: precrqu_s_qb_ph({{ Rd.uw = dspPrecrqu( Rs.uw, Rt.uw, &dspctl ); }});
                        }
                    }
                    0x2: decode OP_LO {
                        format DspIntOp {
                            0x4: precrq_ph_w({{ Rd.uw = Rs.uw<31:16> << 16 | Rt.uw<31:16>; }});
                            0x5: precrq_rs_ph_w({{ Rd.uw = dspPrecrq( Rs.uw, Rt.uw, SIMD_FMT_W, &dspctl ); }});
                        }
                    }
                    0x3: decode OP_LO {
                        format DspIntOp {
                            0x0: cmpgdu_eq_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                                   UNSIGNED, CMP_EQ, &dspctl ); }});
                            0x1: cmpgdu_lt_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                                   UNSIGNED, CMP_LT, &dspctl  ); }});
                            0x2: cmpgdu_le_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
                                                                   UNSIGNED, CMP_LE, &dspctl ); }});
                            0x6: precr_sra_ph_w({{ Rt.uw = dspPrecrSra( Rt.uw, Rs.uw, RD,
                                                                        SIMD_FMT_W, NOROUND ); }});
                            0x7: precr_sra_r_ph_w({{ Rt.uw = dspPrecrSra( Rt.uw, Rs.uw, RD,
                                                                        SIMD_FMT_W, ROUND ); }});
                        }
                    }
                }

                //Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field (DSP ASE MANUAL)
                0x2: decode OP_HI {
                    0x0: decode OP_LO {
                        format DspIntOp {
                            0x1: absq_s_qb({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_QB, &dspctl );}});
                            0x2: repl_qb({{ Rd.uw = RS_RT<7:0> << 24 |
                                                    RS_RT<7:0> << 16 |
                                                    RS_RT<7:0> << 8 |
                                                    RS_RT<7:0>; }});
                            0x3: replv_qb({{ Rd.sw = Rt.uw<7:0> << 24 |
                                                     Rt.uw<7:0> << 16 |
                                                     Rt.uw<7:0> << 8 |
                                                     Rt.uw<7:0>; }});
                            0x4: precequ_ph_qbl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                     SIMD_FMT_PH, SIGNED, MODE_L ); }});
                            0x5: precequ_ph_qbr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                     SIMD_FMT_PH, SIGNED, MODE_R ); }});
                            0x6: precequ_ph_qbla({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                      SIMD_FMT_PH, SIGNED, MODE_LA ); }});
                            0x7: precequ_ph_qbra({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                      SIMD_FMT_PH, SIGNED, MODE_RA ); }});
                        }
                    }
                    0x1: decode OP_LO {
                        format DspIntOp {
                            0x1: absq_s_ph({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_PH, &dspctl ); }});
                            0x2: repl_ph({{ Rd.uw = (sext<10>(RS_RT))<15:0> << 16 |
                                                    (sext<10>(RS_RT))<15:0>; }});
                            0x3: replv_ph({{ Rd.uw = Rt.uw<15:0> << 16 |
                                                     Rt.uw<15:0>; }});
                            0x4: preceq_w_phl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_PH, SIGNED,
                                                                   SIMD_FMT_W, SIGNED, MODE_L ); }});
                            0x5: preceq_w_phr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_PH, SIGNED,
                                                                   SIMD_FMT_W, SIGNED, MODE_R ); }});
                        }
                    }
                    0x2: decode OP_LO {
                        format DspIntOp {
                            0x1: absq_s_w({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_W, &dspctl ); }});
                        }
                    }
                    0x3: decode OP_LO {
                        0x3: IntOp::bitrev({{ Rd.uw = bitrev( Rt.uw<15:0> ); }});
                        format DspIntOp {
                            0x4: preceu_ph_qbl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                    SIMD_FMT_PH, UNSIGNED, MODE_L ); }});
                            0x5: preceu_ph_qbr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                    SIMD_FMT_PH, UNSIGNED, MODE_R ); }});
                            0x6: preceu_ph_qbla({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                     SIMD_FMT_PH, UNSIGNED, MODE_LA ); }});
                            0x7: preceu_ph_qbra({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
                                                                     SIMD_FMT_PH, UNSIGNED, MODE_RA ); }});
                        }
                    }
                }

                //Table 5-8 MIPS32 SHLL.QB Encoding of the op Field (DSP ASE MANUAL)
                0x3: decode OP_HI {
                    0x0: decode OP_LO {
                        format DspIntOp {
                            0x0: shll_qb({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_QB,
                                                             NOSATURATE, UNSIGNED, &dspctl ); }});
                            0x1: shrl_qb({{ Rd.sw = dspShrl( Rt.sw, RS, SIMD_FMT_QB,
                                                             UNSIGNED ); }});
                            0x2: shllv_qb({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_QB,
                                                              NOSATURATE, UNSIGNED, &dspctl ); }});
                            0x3: shrlv_qb({{ Rd.sw = dspShrl( Rt.sw, Rs.sw, SIMD_FMT_QB,
                                                              UNSIGNED ); }});
                            0x4: shra_qb({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_QB,
                                                             NOROUND, SIGNED, &dspctl ); }});
                            0x5: shra_r_qb({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_QB,
                                                               ROUND, SIGNED, &dspctl ); }});
                            0x6: shrav_qb({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_QB,
                                                              NOROUND, SIGNED, &dspctl ); }});
                            0x7: shrav_r_qb({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_QB,
                                                                ROUND, SIGNED, &dspctl ); }});
                        }
                    }
                    0x1: decode OP_LO {
                        format DspIntOp {
                            0x0: shll_ph({{ Rd.uw = dspShll( Rt.uw, RS, SIMD_FMT_PH,
                                                             NOSATURATE, SIGNED, &dspctl ); }});
                            0x1: shra_ph({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_PH,
                                                             NOROUND, SIGNED, &dspctl ); }});
                            0x2: shllv_ph({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_PH,
                                                              NOSATURATE, SIGNED, &dspctl ); }});
                            0x3: shrav_ph({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_PH,
                                                              NOROUND, SIGNED, &dspctl ); }});
                            0x4: shll_s_ph({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_PH,
                                                               SATURATE, SIGNED, &dspctl ); }});
                            0x5: shra_r_ph({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_PH,
                                                               ROUND, SIGNED, &dspctl ); }});
                            0x6: shllv_s_ph({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_PH,
                                                                SATURATE, SIGNED, &dspctl ); }});
                            0x7: shrav_r_ph({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_PH,
                                                                ROUND, SIGNED, &dspctl ); }});
                        }
                    }
                    0x2: decode OP_LO {
                        format DspIntOp {
                            0x4: shll_s_w({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_W,
                                                              SATURATE, SIGNED, &dspctl ); }});
                            0x5: shra_r_w({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_W,
                                                              ROUND, SIGNED, &dspctl ); }});
                            0x6: shllv_s_w({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_W,
                                                               SATURATE, SIGNED, &dspctl ); }});
                            0x7: shrav_r_w({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_W,
                                                               ROUND, SIGNED, &dspctl ); }});
                        }
                    }
                    0x3: decode OP_LO {
                        format DspIntOp {
                            0x1: shrl_ph({{ Rd.sw = dspShrl( Rt.sw, RS, SIMD_FMT_PH,
                                                             UNSIGNED ); }});
                            0x3: shrlv_ph({{ Rd.sw = dspShrl( Rt.sw, Rs.sw, SIMD_FMT_PH,
                                                              UNSIGNED ); }});
                        }
                    }
                }
            }

            0x3: decode FUNCTION_LO {

                //Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field (DSP ASE Rev2 Manual)
                0x0: decode OP_HI {
                    0x0: decode OP_LO {
                        format DspIntOp {
                            0x0: adduh_qb({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_QB,
                                                              NOROUND, UNSIGNED ); }});
                            0x1: subuh_qb({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_QB,
                                                              NOROUND, UNSIGNED ); }});
                            0x2: adduh_r_qb({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_QB,
                                                                ROUND, UNSIGNED ); }});
                            0x3: subuh_r_qb({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_QB,
                                                                ROUND, UNSIGNED ); }});
                        }
                    }
                    0x1: decode OP_LO {
                        format DspIntOp {
                            0x0: addqh_ph({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                              NOROUND, SIGNED ); }});
                            0x1: subqh_ph({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                              NOROUND, SIGNED ); }});
                            0x2: addqh_r_ph({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                                ROUND, SIGNED ); }});
                            0x3: subqh_r_ph({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                                ROUND, SIGNED ); }});
                            0x4: mul_ph({{ Rd.sw = dspMul( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                           NOSATURATE, &dspctl ); }}, IntMultOp);
                            0x6: mul_s_ph({{ Rd.sw = dspMul( Rs.sw, Rt.sw, SIMD_FMT_PH,
                                                             SATURATE, &dspctl ); }}, IntMultOp);

                        }
                    }
                    0x2: decode OP_LO {
                        format DspIntOp {
                            0x0: addqh_w({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                             NOROUND, SIGNED ); }});
                            0x1: subqh_w({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                             NOROUND, SIGNED ); }});
                            0x2: addqh_r_w({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                               ROUND, SIGNED ); }});
                            0x3: subqh_r_w({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                               ROUND, SIGNED ); }});
                            0x6: mulq_s_w({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                              SATURATE, NOROUND, &dspctl ); }}, IntMultOp);
                            0x7: mulq_rs_w({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_W,
                                                               SATURATE, ROUND, &dspctl ); }}, IntMultOp);
                        }
                    }
                }
            }

            //Table A-10 MIPS32 BSHFL Encoding of sa Field
            0x4: decode SA {
                format BasicOp {
                    0x02: wsbh({{ Rd.uw = Rt.uw<23:16> << 24 |
                                      Rt.uw<31:24> << 16 |
                                      Rt.uw<7:0>   << 8  |
                                      Rt.uw<15:8>;
                    }});
                    0x10: seb({{ Rd.sw = Rt.sb; }});
                    0x18: seh({{ Rd.sw = Rt.sh; }});
                }
            }

            0x6: decode FUNCTION_LO {

                //Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field (DSP ASE MANUAL)
                0x0: decode OP_HI {
                    0x0: decode OP_LO {
                        format DspHiLoOp {
                            0x0: dpa_w_ph({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
                                                             SIMD_FMT_PH, SIGNED, MODE_L ); }}, IntMultOp);
                            0x1: dps_w_ph({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
                                                             SIMD_FMT_PH, SIGNED, MODE_L ); }}, IntMultOp);
                            0x2: mulsa_w_ph({{ dspac = dspMulsa( dspac, Rs.sw, Rt.sw,
                                                                 ACDST, SIMD_FMT_PH ); }}, IntMultOp);
                            0x3: dpau_h_qbl({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
                                                               SIMD_FMT_QB, UNSIGNED, MODE_L ); }}, IntMultOp);
                            0x4: dpaq_s_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
                                                                 SIMD_FMT_W, NOSATURATE, MODE_L, &dspctl ); }}, IntMultOp);
                            0x5: dpsq_s_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
                                                                 SIMD_FMT_W, NOSATURATE, MODE_L, &dspctl ); }}, IntMultOp);
                            0x6: mulsaq_s_w_ph({{ dspac = dspMulsaq( dspac, Rs.sw, Rt.sw,
                                                                     ACDST, SIMD_FMT_PH, &dspctl ); }}, IntMultOp);
                            0x7: dpau_h_qbr({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
                                                               SIMD_FMT_QB, UNSIGNED, MODE_R ); }}, IntMultOp);
                        }
                    }
                    0x1: decode OP_LO {
                        format DspHiLoOp {
                            0x0: dpax_w_ph({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
                                                              SIMD_FMT_PH, SIGNED, MODE_X ); }}, IntMultOp);
                            0x1: dpsx_w_ph({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
                                                              SIMD_FMT_PH, SIGNED, MODE_X ); }}, IntMultOp);
                            0x3: dpsu_h_qbl({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
                                                               SIMD_FMT_QB, UNSIGNED, MODE_L ); }}, IntMultOp);
                            0x4: dpaq_sa_l_w({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_W,
                                                                 SIMD_FMT_L, SATURATE, MODE_L, &dspctl ); }}, IntMultOp);
                            0x5: dpsq_sa_l_w({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_W,
                                                                 SIMD_FMT_L, SATURATE, MODE_L, &dspctl ); }}, IntMultOp);
                            0x7: dpsu_h_qbr({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
                                                               SIMD_FMT_QB, UNSIGNED, MODE_R ); }}, IntMultOp);
                        }
                    }
                    0x2: decode OP_LO {
                        format DspHiLoOp {
                            0x0: maq_sa_w_phl({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
                                                                 MODE_L, SATURATE, &dspctl ); }}, IntMultOp);
                            0x2: maq_sa_w_phr({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
                                                                 MODE_R, SATURATE, &dspctl ); }}, IntMultOp);
                            0x4: maq_s_w_phl({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
                                                                 MODE_L, NOSATURATE, &dspctl ); }}, IntMultOp);
                            0x6: maq_s_w_phr({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
                                                                 MODE_R, NOSATURATE, &dspctl ); }}, IntMultOp);
                        }
                    }
                    0x3: decode OP_LO {
                        format DspHiLoOp {
                            0x0: dpaqx_s_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
                                                                  SIMD_FMT_W, NOSATURATE, MODE_X, &dspctl ); }}, IntMultOp);
                            0x1: dpsqx_s_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
                                                                  SIMD_FMT_W, NOSATURATE, MODE_X, &dspctl ); }}, IntMultOp);
                            0x2: dpaqx_sa_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
                                                                   SIMD_FMT_W, SATURATE, MODE_X, &dspctl ); }}, IntMultOp);
                            0x3: dpsqx_sa_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
                                                                   SIMD_FMT_W, SATURATE, MODE_X, &dspctl ); }}, IntMultOp);
                        }
                    }
                }

                //Table 3.3 MIPS32 APPEND Encoding of the op Field
                0x1: decode OP_HI {
                    0x0: decode OP_LO {
                        format IntOp {
                            0x0: append({{ Rt.uw = (Rt.uw << RD) | bits(Rs.uw,RD-1,0); }});
                            0x1: prepend({{ Rt.uw = (Rt.uw >> RD) | (bits(Rs.uw, RD - 1, 0) << (32 - RD)); }});
                        }
                    }
                    0x2: decode OP_LO {
                        format IntOp {
                            0x0: balign({{ Rt.uw = (Rt.uw << (8*BP)) | (Rs.uw >> (8*(4-BP))); }});
                        }
                    }
                }

            }
            0x7: decode FUNCTION_LO {

                //Table 5-11 MIPS32 EXTR.W Encoding of the op Field (DSP ASE MANUAL)
                0x0: decode OP_HI {
                    0x0: decode OP_LO {
                        format DspHiLoOp {
                            0x0: extr_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
                                                            NOROUND, NOSATURATE, &dspctl ); }});
                            0x1: extrv_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
                                                             NOROUND, NOSATURATE, &dspctl ); }});
                            0x2: extp({{ Rt.uw = dspExtp( dspac, RS, &dspctl ); }});
                            0x3: extpv({{ Rt.uw = dspExtp( dspac, Rs.uw, &dspctl ); }});
                            0x4: extr_r_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
                                                              ROUND, NOSATURATE, &dspctl ); }});
                            0x5: extrv_r_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
                                                               ROUND, NOSATURATE, &dspctl ); }});
                            0x6: extr_rs_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
                                                               ROUND, SATURATE, &dspctl ); }});
                            0x7: extrv_rs_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
                                                                ROUND, SATURATE, &dspctl ); }});
                        }
                    }
                    0x1: decode OP_LO {
                        format DspHiLoOp {
                            0x2: extpdp({{ Rt.uw = dspExtpd( dspac, RS, &dspctl ); }});
                            0x3: extpdpv({{ Rt.uw = dspExtpd( dspac, Rs.uw, &dspctl ); }});
                            0x6: extr_s_h({{ Rt.uw = dspExtr( dspac, SIMD_FMT_PH, RS,
                                                              NOROUND, SATURATE, &dspctl ); }});
                            0x7: extrv_s_h({{ Rt.uw = dspExtr( dspac, SIMD_FMT_PH, Rs.uw,
                                                               NOROUND, SATURATE, &dspctl ); }});
                        }
                    }
                    0x2: decode OP_LO {
                        format DspIntOp {
                            0x2: rddsp({{ Rd.uw = readDSPControl( &dspctl, RDDSPMASK ); }});
                            0x3: wrdsp({{ writeDSPControl( &dspctl, Rs.uw, WRDSPMASK ); }});
                        }
                    }
                    0x3: decode OP_LO {
                        format DspHiLoOp {
                            0x2: shilo({{ if( sext<6>(HILOSA) < 0 )
                                              dspac = (uint64_t)dspac << -sext<6>(HILOSA);
                                          else
                                              dspac = (uint64_t)dspac >> sext<6>(HILOSA); }});
                            0x3: shilov({{ if( sext<6>(Rs.sw<5:0>) < 0 )
                                              dspac = (uint64_t)dspac << -sext<6>(Rs.sw<5:0>);
                                           else
                                              dspac = (uint64_t)dspac >> sext<6>(Rs.sw<5:0>); }});
                            0x7: mthlip({{ dspac = dspac << 32;
                                           dspac |= Rs.uw;
                                           dspctl = insertBits( dspctl, 5, 0,
                                                                dspctl<5:0>+32 ); }});
                        }
                    }
                }
                0x3: decode OP_HI {
                    0x2: decode OP_LO {
                        0x3: FailUnimpl::rdhwr();
                    }
                }
            }
        }
    }

    0x4: decode OPCODE_LO {
        format LoadMemory {
          0x0: lb({{ Rt.sw = Mem.sb; }}, mem_flags = NO_ALIGN_FAULT);
          0x1: lh({{ Rt.sw = Mem.sh; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
            0x3: lw({{ Rt.sw = Mem.sw; }});
            0x4: lbu({{ Rt.uw = Mem.ub;}}, mem_flags = NO_ALIGN_FAULT);
            0x5: lhu({{ Rt.uw = Mem.uh; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
        }

        format LoadUnalignedMemory {
            0x2: lwl({{ uint32_t mem_shift = 24 - (8 * byte_offset);
                        Rt.uw = mem_word << mem_shift |
                            (Rt.uw & mask(mem_shift));
                     }});
            0x6: lwr({{ uint32_t mem_shift = 8 * byte_offset;
                        Rt.uw = (Rt.uw & (mask(mem_shift) << (32 - mem_shift))) |
                            (mem_word >> mem_shift);
                     }});
      }
    }

    0x5: decode OPCODE_LO {
        format StoreMemory {
            0x0: sb({{ Mem.ub = Rt<7:0>; }}, mem_flags = NO_ALIGN_FAULT);
            0x1: sh({{ Mem.uh = Rt<15:0>; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
            0x3: sw({{ Mem.uw = Rt<31:0>; }});
        }

        format StoreUnalignedMemory {
            0x2: swl({{ uint32_t reg_shift = 24 - (8 * byte_offset);
                        uint32_t mem_shift = 32 - reg_shift;
                        mem_word = (mem_word & (mask(reg_shift) << mem_shift)) |
                            (Rt.uw >> reg_shift);
                     }});
            0x6: swr({{ uint32_t reg_shift = 8 * byte_offset;
                        mem_word = Rt.uw << reg_shift |
                            (mem_word & (mask(reg_shift)));
                     }});
        }
        format CP0Control {
            0x7: cache({{
                //Addr CacheEA = Rs.uw + OFFSET;
                           //fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA);
                         }});
        }
    }

    0x6: decode OPCODE_LO {
        format LoadMemory {
            0x0: ll({{ Rt.uw = Mem.uw; }}, mem_flags=LLSC);
            0x1: lwc1({{ Ft.uw = Mem.uw; }});
            0x5: ldc1({{ Ft.ud = Mem.ud; }});
        }
        0x2: CP2Unimpl::lwc2();
        0x6: CP2Unimpl::ldc2();
        0x3: Prefetch::pref();
    }


    0x7: decode OPCODE_LO {
        0x0: StoreCond::sc({{ Mem.uw = Rt.uw;}},
                           {{ uint64_t tmp = write_result;
                              Rt.uw = (tmp == 0 || tmp == 1) ? tmp : Rt.uw;
                           }}, mem_flags=LLSC, inst_flags = IsStoreConditional);

        format StoreMemory {
          0x1: swc1({{ Mem.uw = Ft.uw;}});
          0x5: sdc1({{ Mem.ud = Ft.ud;}});
        }

        0x2: CP2Unimpl::swc2();
        0x6: CP2Unimpl::sdc2();

    }
}