/*
 * Copyright (c) 2007-2008 The Florida State University
 * Copyright (c) 2009 The University of Edinburgh
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Stephen Hines
 *          Timothy M. Jones
 */

#include "arch/power/process.hh"

#include "arch/power/isa_traits.hh"
#include "arch/power/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/logging.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/page_table.hh"
#include "params/Process.hh"
#include "sim/aux_vector.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"

using namespace std;
using namespace PowerISA;

PowerProcess::PowerProcess(ProcessParams *params, ObjectFile *objFile)
    : Process(params,
              new EmulationPageTable(params->name, params->pid, PageBytes),
              objFile)
{
    fatal_if(params->useArchPT, "Arch page tables not implemented.");
    // Set up break point (Top of Heap)
    Addr brk_point = objFile->dataBase() + objFile->dataSize() +
                     objFile->bssSize();
    brk_point = roundUp(brk_point, PageBytes);

    Addr stack_base = 0xbf000000L;

    Addr max_stack_size = 8 * 1024 * 1024;

    // Set pointer for next thread stack.  Reserve 8M for main stack.
    Addr next_thread_stack_base = stack_base - max_stack_size;

    // Set up region for mmaps. For now, start at bottom of kuseg space.
    Addr mmap_end = 0x70000000L;

    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
                                     next_thread_stack_base, mmap_end);
}

void
PowerProcess::initState()
{
    Process::initState();

    argsInit(MachineBytes, PageBytes);
}

void
PowerProcess::argsInit(int intSize, int pageSize)
{
    typedef AuxVector<uint32_t> auxv_t;
    std::vector<auxv_t> auxv;

    string filename;
    if (argv.size() < 1)
        filename = "";
    else
        filename = argv[0];

    //We want 16 byte alignment
    uint64_t align = 16;

    // Patch the ld_bias for dynamic executables.
    updateBias();

    // load object file into target memory
    objFile->loadSections(initVirtMem);

    //Setup the auxilliary vectors. These will already have endian conversion.
    //Auxilliary vectors are loaded only for elf formatted executables.
    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
    if (elfObject) {
        uint32_t features = 0;

        //Bits which describe the system hardware capabilities
        //XXX Figure out what these should be
        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
        //The system page size
        auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes));
        //Frequency at which times() increments
        auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
        // For statically linked executables, this is the virtual address of the
        // program header tables if they appear in the executable image
        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
        // This is the size of a program header entry from the elf file.
        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
        // This is the number of program headers from the original elf file.
        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
        // This is the base address of the ELF interpreter; it should be
        // zero for static executables or contain the base address for
        // dynamic executables.
        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
        //XXX Figure out what this should be.
        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
        //The entry point to the program
        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
        //Different user and group IDs
        auxv.push_back(auxv_t(M5_AT_UID, uid()));
        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
        auxv.push_back(auxv_t(M5_AT_GID, gid()));
        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
        //Whether to enable "secure mode" in the executable
        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
        //The filename of the program
        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
        //The string "v51" with unknown meaning
        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
    }

    //Figure out how big the initial stack nedes to be

    // A sentry NULL void pointer at the top of the stack.
    int sentry_size = intSize;

    string platform = "v51";
    int platform_size = platform.size() + 1;

    // The aux vectors are put on the stack in two groups. The first group are
    // the vectors that are generated as the elf is loaded. The second group
    // are the ones that were computed ahead of time and include the platform
    // string.
    int aux_data_size = filename.size() + 1;

    int env_data_size = 0;
    for (int i = 0; i < envp.size(); ++i) {
        env_data_size += envp[i].size() + 1;
    }
    int arg_data_size = 0;
    for (int i = 0; i < argv.size(); ++i) {
        arg_data_size += argv[i].size() + 1;
    }

    int info_block_size =
        sentry_size + env_data_size + arg_data_size +
        aux_data_size + platform_size;

    //Each auxilliary vector is two 4 byte words
    int aux_array_size = intSize * 2 * (auxv.size() + 1);

    int envp_array_size = intSize * (envp.size() + 1);
    int argv_array_size = intSize * (argv.size() + 1);

    int argc_size = intSize;

    //Figure out the size of the contents of the actual initial frame
    int frame_size =
        info_block_size +
        aux_array_size +
        envp_array_size +
        argv_array_size +
        argc_size;

    //There needs to be padding after the auxiliary vector data so that the
    //very bottom of the stack is aligned properly.
    int partial_size = frame_size;
    int aligned_partial_size = roundUp(partial_size, align);
    int aux_padding = aligned_partial_size - partial_size;

    int space_needed = frame_size + aux_padding;

    Addr stack_min = memState->getStackBase() - space_needed;
    stack_min = roundDown(stack_min, align);

    memState->setStackSize(memState->getStackBase() - stack_min);

    // map memory
    allocateMem(roundDown(stack_min, pageSize),
                roundUp(memState->getStackSize(), pageSize));

    // map out initial stack contents
    uint32_t sentry_base = memState->getStackBase() - sentry_size;
    uint32_t aux_data_base = sentry_base - aux_data_size;
    uint32_t env_data_base = aux_data_base - env_data_size;
    uint32_t arg_data_base = env_data_base - arg_data_size;
    uint32_t platform_base = arg_data_base - platform_size;
    uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
    uint32_t envp_array_base = auxv_array_base - envp_array_size;
    uint32_t argv_array_base = envp_array_base - argv_array_size;
    uint32_t argc_base = argv_array_base - argc_size;

    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
    DPRINTF(Stack, "0x%x - argc \n", argc_base);
    DPRINTF(Stack, "0x%x - stack min\n", stack_min);

    // write contents to stack

    // figure out argc
    uint32_t argc = argv.size();
    uint32_t guestArgc = PowerISA::htog(argc);

    //Write out the sentry void *
    uint32_t sentry_NULL = 0;
    initVirtMem.writeBlob(sentry_base,
            (uint8_t*)&sentry_NULL, sentry_size);

    //Fix up the aux vectors which point to other data
    for (int i = auxv.size() - 1; i >= 0; i--) {
        if (auxv[i].a_type == M5_AT_PLATFORM) {
            auxv[i].a_val = platform_base;
            initVirtMem.writeString(platform_base, platform.c_str());
        } else if (auxv[i].a_type == M5_AT_EXECFN) {
            auxv[i].a_val = aux_data_base;
            initVirtMem.writeString(aux_data_base, filename.c_str());
        }
    }

    //Copy the aux stuff
    for (int x = 0; x < auxv.size(); x++)
    {
        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
                (uint8_t*)&(auxv[x].a_type), intSize);
        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
                (uint8_t*)&(auxv[x].a_val), intSize);
    }
    //Write out the terminating zeroed auxilliary vector
    const uint64_t zero = 0;
    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
            (uint8_t*)&zero, 2 * intSize);

    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);

    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);

    ThreadContext *tc = system->getThreadContext(contextIds[0]);

    //Set the stack pointer register
    tc->setIntReg(StackPointerReg, stack_min);

    tc->pcState(getStartPC());

    //Align the "stack_min" to a page boundary.
    memState->setStackMin(roundDown(stack_min, pageSize));
}

PowerISA::IntReg
PowerProcess::getSyscallArg(ThreadContext *tc, int &i)
{
    assert(i < 5);
    return tc->readIntReg(ArgumentReg0 + i++);
}

void
PowerProcess::setSyscallArg(ThreadContext *tc, int i, PowerISA::IntReg val)
{
    assert(i < 5);
    tc->setIntReg(ArgumentReg0 + i, val);
}

void
PowerProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
    Cr cr = tc->readIntReg(INTREG_CR);
    if (sysret.successful()) {
        cr.cr0.so = 0;
    } else {
        cr.cr0.so = 1;
    }
    tc->setIntReg(INTREG_CR, cr);
    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
}