/* * Copyright (c) 2007-2008 The Florida State University * Copyright (c) 2009 The University of Edinburgh * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Stephen Hines * Timothy M. Jones */ #include "arch/power/process.hh" #include "arch/power/isa_traits.hh" #include "arch/power/types.hh" #include "base/loader/elf_object.hh" #include "base/loader/object_file.hh" #include "base/logging.hh" #include "cpu/thread_context.hh" #include "debug/Stack.hh" #include "mem/page_table.hh" #include "params/Process.hh" #include "sim/aux_vector.hh" #include "sim/process_impl.hh" #include "sim/syscall_return.hh" #include "sim/system.hh" using namespace std; using namespace PowerISA; PowerProcess::PowerProcess(ProcessParams *params, ObjectFile *objFile) : Process(params, new EmulationPageTable(params->name, params->pid, PageBytes), objFile) { fatal_if(params->useArchPT, "Arch page tables not implemented."); // Set up break point (Top of Heap) Addr brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize(); brk_point = roundUp(brk_point, PageBytes); Addr stack_base = 0xbf000000L; Addr max_stack_size = 8 * 1024 * 1024; // Set pointer for next thread stack. Reserve 8M for main stack. Addr next_thread_stack_base = stack_base - max_stack_size; // Set up region for mmaps. For now, start at bottom of kuseg space. Addr mmap_end = 0x70000000L; memState = make_shared(brk_point, stack_base, max_stack_size, next_thread_stack_base, mmap_end); } void PowerProcess::initState() { Process::initState(); argsInit(MachineBytes, PageBytes); } void PowerProcess::argsInit(int intSize, int pageSize) { typedef AuxVector auxv_t; std::vector auxv; string filename; if (argv.size() < 1) filename = ""; else filename = argv[0]; //We want 16 byte alignment uint64_t align = 16; // Patch the ld_bias for dynamic executables. updateBias(); // load object file into target memory objFile->loadSections(initVirtMem); //Setup the auxilliary vectors. These will already have endian conversion. //Auxilliary vectors are loaded only for elf formatted executables. ElfObject * elfObject = dynamic_cast(objFile); if (elfObject) { uint32_t features = 0; //Bits which describe the system hardware capabilities //XXX Figure out what these should be auxv.push_back(auxv_t(M5_AT_HWCAP, features)); //The system page size auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes)); //Frequency at which times() increments auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64)); // For statically linked executables, this is the virtual address of the // program header tables if they appear in the executable image auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); // This is the size of a program header entry from the elf file. auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); // This is the number of program headers from the original elf file. auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); // This is the base address of the ELF interpreter; it should be // zero for static executables or contain the base address for // dynamic executables. auxv.push_back(auxv_t(M5_AT_BASE, getBias())); //XXX Figure out what this should be. auxv.push_back(auxv_t(M5_AT_FLAGS, 0)); //The entry point to the program auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); //Different user and group IDs auxv.push_back(auxv_t(M5_AT_UID, uid())); auxv.push_back(auxv_t(M5_AT_EUID, euid())); auxv.push_back(auxv_t(M5_AT_GID, gid())); auxv.push_back(auxv_t(M5_AT_EGID, egid())); //Whether to enable "secure mode" in the executable auxv.push_back(auxv_t(M5_AT_SECURE, 0)); //The filename of the program auxv.push_back(auxv_t(M5_AT_EXECFN, 0)); //The string "v51" with unknown meaning auxv.push_back(auxv_t(M5_AT_PLATFORM, 0)); } //Figure out how big the initial stack nedes to be // A sentry NULL void pointer at the top of the stack. int sentry_size = intSize; string platform = "v51"; int platform_size = platform.size() + 1; // The aux vectors are put on the stack in two groups. The first group are // the vectors that are generated as the elf is loaded. The second group // are the ones that were computed ahead of time and include the platform // string. int aux_data_size = filename.size() + 1; int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int info_block_size = sentry_size + env_data_size + arg_data_size + aux_data_size + platform_size; //Each auxilliary vector is two 4 byte words int aux_array_size = intSize * 2 * (auxv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int argv_array_size = intSize * (argv.size() + 1); int argc_size = intSize; //Figure out the size of the contents of the actual initial frame int frame_size = info_block_size + aux_array_size + envp_array_size + argv_array_size + argc_size; //There needs to be padding after the auxiliary vector data so that the //very bottom of the stack is aligned properly. int partial_size = frame_size; int aligned_partial_size = roundUp(partial_size, align); int aux_padding = aligned_partial_size - partial_size; int space_needed = frame_size + aux_padding; Addr stack_min = memState->getStackBase() - space_needed; stack_min = roundDown(stack_min, align); memState->setStackSize(memState->getStackBase() - stack_min); // map memory allocateMem(roundDown(stack_min, pageSize), roundUp(memState->getStackSize(), pageSize)); // map out initial stack contents uint32_t sentry_base = memState->getStackBase() - sentry_size; uint32_t aux_data_base = sentry_base - aux_data_size; uint32_t env_data_base = aux_data_base - env_data_size; uint32_t arg_data_base = env_data_base - arg_data_size; uint32_t platform_base = arg_data_base - platform_size; uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding; uint32_t envp_array_base = auxv_array_base - envp_array_size; uint32_t argv_array_base = envp_array_base - argv_array_size; uint32_t argc_base = argv_array_base - argc_size; DPRINTF(Stack, "The addresses of items on the initial stack:\n"); DPRINTF(Stack, "0x%x - aux data\n", aux_data_base); DPRINTF(Stack, "0x%x - env data\n", env_data_base); DPRINTF(Stack, "0x%x - arg data\n", arg_data_base); DPRINTF(Stack, "0x%x - platform base\n", platform_base); DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base); DPRINTF(Stack, "0x%x - envp array\n", envp_array_base); DPRINTF(Stack, "0x%x - argv array\n", argv_array_base); DPRINTF(Stack, "0x%x - argc \n", argc_base); DPRINTF(Stack, "0x%x - stack min\n", stack_min); // write contents to stack // figure out argc uint32_t argc = argv.size(); uint32_t guestArgc = PowerISA::htog(argc); //Write out the sentry void * uint32_t sentry_NULL = 0; initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size); //Fix up the aux vectors which point to other data for (int i = auxv.size() - 1; i >= 0; i--) { if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) { auxv[i].setAuxVal(platform_base); initVirtMem.writeString(platform_base, platform.c_str()); } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) { auxv[i].setAuxVal(aux_data_base); initVirtMem.writeString(aux_data_base, filename.c_str()); } } //Copy the aux stuff for (int x = 0; x < auxv.size(); x++) { initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, (uint8_t*)&(auxv[x].getAuxType()), intSize); initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, (uint8_t*)&(auxv[x].getAuxVal()), intSize); } //Write out the terminating zeroed auxilliary vector const uint64_t zero = 0; initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(), (uint8_t*)&zero, 2 * intSize); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); ThreadContext *tc = system->getThreadContext(contextIds[0]); //Set the stack pointer register tc->setIntReg(StackPointerReg, stack_min); tc->pcState(getStartPC()); //Align the "stack_min" to a page boundary. memState->setStackMin(roundDown(stack_min, pageSize)); } PowerISA::IntReg PowerProcess::getSyscallArg(ThreadContext *tc, int &i) { assert(i < 5); return tc->readIntReg(ArgumentReg0 + i++); } void PowerProcess::setSyscallArg(ThreadContext *tc, int i, PowerISA::IntReg val) { assert(i < 5); tc->setIntReg(ArgumentReg0 + i, val); } void PowerProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) { Cr cr = tc->readIntReg(INTREG_CR); if (sysret.successful()) { cr.cr0.so = 0; } else { cr.cr0.so = 1; } tc->setIntReg(INTREG_CR, cr); tc->setIntReg(ReturnValueReg, sysret.encodedValue()); }