/*
 * Copyright (c) 2003-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Gabe Black
 *          Kevin Lim
 */

#include <algorithm>

#include "arch/sparc/faults.hh"
#include "arch/sparc/isa_traits.hh"
#include "arch/sparc/types.hh"
#include "base/bitfield.hh"
#include "base/trace.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#if !FULL_SYSTEM
#include "arch/sparc/process.hh"
#include "mem/page_table.hh"
#include "sim/process.hh"
#endif

using namespace std;

namespace SparcISA
{

template<> SparcFaultBase::FaultVals
    SparcFault<PowerOnReset>::vals =
    {"power_on_reset", 0x001, 0, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<WatchDogReset>::vals =
    {"watch_dog_reset", 0x002, 120, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<ExternallyInitiatedReset>::vals =
    {"externally_initiated_reset", 0x003, 110, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<SoftwareInitiatedReset>::vals =
    {"software_initiated_reset", 0x004, 130, {SH, SH, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<REDStateException>::vals =
    {"RED_state_exception", 0x005, 1, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<StoreError>::vals =
    {"store_error", 0x007, 201, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<InstructionAccessException>::vals =
    {"instruction_access_exception", 0x008, 300, {H, H, H}};

//XXX This trap is apparently dropped from ua2005
/*template<> SparcFaultBase::FaultVals
    SparcFault<InstructionAccessMMUMiss>::vals =
    {"inst_mmu", 0x009, 2, {H, H, H}};*/

template<> SparcFaultBase::FaultVals
    SparcFault<InstructionAccessError>::vals =
    {"instruction_access_error", 0x00A, 400, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<IllegalInstruction>::vals =
    {"illegal_instruction", 0x010, 620, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<PrivilegedOpcode>::vals =
    {"privileged_opcode", 0x011, 700, {P, SH, SH}};

//XXX This trap is apparently dropped from ua2005
/*template<> SparcFaultBase::FaultVals
    SparcFault<UnimplementedLDD>::vals =
    {"unimp_ldd", 0x012, 6, {H, H, H}};*/

//XXX This trap is apparently dropped from ua2005
/*template<> SparcFaultBase::FaultVals
    SparcFault<UnimplementedSTD>::vals =
    {"unimp_std", 0x013, 6, {H, H, H}};*/

template<> SparcFaultBase::FaultVals
    SparcFault<FpDisabled>::vals =
    {"fp_disabled", 0x020, 800, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<FpExceptionIEEE754>::vals =
    {"fp_exception_ieee_754", 0x021, 1110, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<FpExceptionOther>::vals =
    {"fp_exception_other", 0x022, 1110, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<TagOverflow>::vals =
    {"tag_overflow", 0x023, 1400, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<CleanWindow>::vals =
    {"clean_window", 0x024, 1010, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<DivisionByZero>::vals =
    {"division_by_zero", 0x028, 1500, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<InternalProcessorError>::vals =
    {"internal_processor_error", 0x029, 4, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<InstructionInvalidTSBEntry>::vals =
    {"instruction_invalid_tsb_entry", 0x02A, 210, {H, H, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<DataInvalidTSBEntry>::vals =
    {"data_invalid_tsb_entry", 0x02B, 1203, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<DataAccessException>::vals =
    {"data_access_exception", 0x030, 1201, {H, H, H}};

//XXX This trap is apparently dropped from ua2005
/*template<> SparcFaultBase::FaultVals
    SparcFault<DataAccessMMUMiss>::vals =
    {"data_mmu", 0x031, 12, {H, H, H}};*/

template<> SparcFaultBase::FaultVals
    SparcFault<DataAccessError>::vals =
    {"data_access_error", 0x032, 1210, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<DataAccessProtection>::vals =
    {"data_access_protection", 0x033, 1207, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<MemAddressNotAligned>::vals =
    {"mem_address_not_aligned", 0x034, 1020, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<LDDFMemAddressNotAligned>::vals =
    {"LDDF_mem_address_not_aligned", 0x035, 1010, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<STDFMemAddressNotAligned>::vals =
    {"STDF_mem_address_not_aligned", 0x036, 1010, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<PrivilegedAction>::vals =
    {"privileged_action", 0x037, 1110, {H, H, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<LDQFMemAddressNotAligned>::vals =
    {"LDQF_mem_address_not_aligned", 0x038, 1010, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<STQFMemAddressNotAligned>::vals =
    {"STQF_mem_address_not_aligned", 0x039, 1010, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<InstructionRealTranslationMiss>::vals =
    {"instruction_real_translation_miss", 0x03E, 208, {H, H, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<DataRealTranslationMiss>::vals =
    {"data_real_translation_miss", 0x03F, 1203, {H, H, H}};

//XXX This trap is apparently dropped from ua2005
/*template<> SparcFaultBase::FaultVals
    SparcFault<AsyncDataError>::vals =
    {"async_data", 0x040, 2, {H, H, H}};*/

template<> SparcFaultBase::FaultVals
    SparcFault<InterruptLevelN>::vals =
    {"interrupt_level_n", 0x040, 0, {P, P, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<HstickMatch>::vals =
    {"hstick_match", 0x05E, 1601, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<TrapLevelZero>::vals =
    {"trap_level_zero", 0x05F, 202, {H, H, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<InterruptVector>::vals =
    {"interrupt_vector", 0x060, 2630, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<PAWatchpoint>::vals =
    {"PA_watchpoint", 0x061, 1209, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<VAWatchpoint>::vals =
    {"VA_watchpoint", 0x062, 1120, {P, P, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<FastInstructionAccessMMUMiss>::vals =
    {"fast_instruction_access_MMU_miss", 0x064, 208, {H, H, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<FastDataAccessMMUMiss>::vals =
    {"fast_data_access_MMU_miss", 0x068, 1203, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<FastDataAccessProtection>::vals =
    {"fast_data_access_protection", 0x06C, 1207, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<InstructionBreakpoint>::vals =
    {"instruction_break", 0x076, 610, {H, H, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<CpuMondo>::vals =
    {"cpu_mondo", 0x07C, 1608, {P, P, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<DevMondo>::vals =
    {"dev_mondo", 0x07D, 1611, {P, P, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<ResumableError>::vals =
    {"resume_error", 0x07E, 3330, {P, P, SH}};

template<> SparcFaultBase::FaultVals
    SparcFault<SpillNNormal>::vals =
    {"spill_n_normal", 0x080, 900, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<SpillNOther>::vals =
    {"spill_n_other", 0x0A0, 900, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<FillNNormal>::vals =
    {"fill_n_normal", 0x0C0, 900, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<FillNOther>::vals =
    {"fill_n_other", 0x0E0, 900, {P, P, H}};

template<> SparcFaultBase::FaultVals
    SparcFault<TrapInstruction>::vals =
    {"trap_instruction", 0x100, 1602, {P, P, H}};

/**
 * This causes the thread context to enter RED state. This causes the side
 * effects which go with entering RED state because of a trap.
 */

void enterREDState(ThreadContext *tc)
{
    //@todo Disable the mmu?
    //@todo Disable watchpoints?
    MiscReg HPSTATE = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
    //HPSTATE.red = 1
    HPSTATE |= (1 << 5);
    //HPSTATE.hpriv = 1
    HPSTATE |= (1 << 2);
    tc->setMiscReg(MISCREG_HPSTATE, HPSTATE);
    //PSTATE.priv is set to 1 here. The manual says it should be 0, but
    //Legion sets it to 1.
    MiscReg PSTATE = tc->readMiscRegNoEffect(MISCREG_PSTATE);
    PSTATE |= (1 << 2);
    tc->setMiscReg(MISCREG_PSTATE, PSTATE);
}

/**
 * This sets everything up for a RED state trap except for actually jumping to
 * the handler.
 */

void doREDFault(ThreadContext *tc, TrapType tt)
{
    MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL);
    MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
    MiscReg PSTATE = tc->readMiscRegNoEffect(MISCREG_PSTATE);
    MiscReg HPSTATE = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
    //MiscReg CCR = tc->readMiscRegNoEffect(MISCREG_CCR);
    MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2);
    MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
    MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
    //MiscReg CANSAVE = tc->readMiscRegNoEffect(MISCREG_CANSAVE);
    MiscReg CANSAVE = tc->readMiscRegNoEffect(NumIntArchRegs + 3);
    MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL);
    MiscReg PC = tc->readPC();
    MiscReg NPC = tc->readNextPC();

    TL++;

    if (bits(PSTATE, 3,3)) {
        PC &= mask(32);
        NPC &= mask(32);
    }

    //set TSTATE.gl to gl
    replaceBits(TSTATE, 42, 40, GL);
    //set TSTATE.ccr to ccr
    replaceBits(TSTATE, 39, 32, CCR);
    //set TSTATE.asi to asi
    replaceBits(TSTATE, 31, 24, ASI);
    //set TSTATE.pstate to pstate
    replaceBits(TSTATE, 20, 8, PSTATE);
    //set TSTATE.cwp to cwp
    replaceBits(TSTATE, 4, 0, CWP);

    //Write back TSTATE
    tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);

    //set TPC to PC
    tc->setMiscRegNoEffect(MISCREG_TPC, PC);
    //set TNPC to NPC
    tc->setMiscRegNoEffect(MISCREG_TNPC, NPC);

    //set HTSTATE.hpstate to hpstate
    tc->setMiscRegNoEffect(MISCREG_HTSTATE, HPSTATE);

    //TT = trap type;
    tc->setMiscRegNoEffect(MISCREG_TT, tt);

    //Update GL
    tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxGL));

    PSTATE = mbits(PSTATE, 2, 2); // just save the priv bit
    PSTATE |= (1 << 4); //set PSTATE.pef to 1
    tc->setMiscRegNoEffect(MISCREG_PSTATE, PSTATE);

    //set HPSTATE.red to 1
    HPSTATE |= (1 << 5);
    //set HPSTATE.hpriv to 1
    HPSTATE |= (1 << 2);
    //set HPSTATE.ibe to 0
    HPSTATE &= ~(1 << 10);
    //set HPSTATE.tlz to 0
    HPSTATE &= ~(1 << 0);
    tc->setMiscRegNoEffect(MISCREG_HPSTATE, HPSTATE);

    bool changedCWP = true;
    if(tt == 0x24)
        CWP++;
    else if(0x80 <= tt && tt <= 0xbf)
        CWP += (CANSAVE + 2);
    else if(0xc0 <= tt && tt <= 0xff)
        CWP--;
    else
        changedCWP = false;

    if(changedCWP)
    {
        CWP = (CWP + NWindows) % NWindows;
        tc->setMiscReg(MISCREG_CWP, CWP);
    }
}

/**
 * This sets everything up for a normal trap except for actually jumping to
 * the handler.
 */

void doNormalFault(ThreadContext *tc, TrapType tt, bool gotoHpriv)
{
    MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL);
    MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
    MiscReg PSTATE = tc->readMiscRegNoEffect(MISCREG_PSTATE);
    MiscReg HPSTATE = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
    //MiscReg CCR = tc->readMiscRegNoEffect(MISCREG_CCR);
    MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2);
    MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
    MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
    //MiscReg CANSAVE = tc->readMiscRegNoEffect(MISCREG_CANSAVE);
    MiscReg CANSAVE = tc->readIntReg(NumIntArchRegs + 3);
    MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL);
    MiscReg PC = tc->readPC();
    MiscReg NPC = tc->readNextPC();

    if (bits(PSTATE, 3,3)) {
        PC &= mask(32);
        NPC &= mask(32);
    }

    //Increment the trap level
    TL++;
    tc->setMiscRegNoEffect(MISCREG_TL, TL);

    //Save off state

    //set TSTATE.gl to gl
    replaceBits(TSTATE, 42, 40, GL);
    //set TSTATE.ccr to ccr
    replaceBits(TSTATE, 39, 32, CCR);
    //set TSTATE.asi to asi
    replaceBits(TSTATE, 31, 24, ASI);
    //set TSTATE.pstate to pstate
    replaceBits(TSTATE, 20, 8, PSTATE);
    //set TSTATE.cwp to cwp
    replaceBits(TSTATE, 4, 0, CWP);

    //Write back TSTATE
    tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);

    //set TPC to PC
    tc->setMiscRegNoEffect(MISCREG_TPC, PC);
    //set TNPC to NPC
    tc->setMiscRegNoEffect(MISCREG_TNPC, NPC);

    //set HTSTATE.hpstate to hpstate
    tc->setMiscRegNoEffect(MISCREG_HTSTATE, HPSTATE);

    //TT = trap type;
    tc->setMiscRegNoEffect(MISCREG_TT, tt);

    //Update the global register level
    if (!gotoHpriv)
        tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxPGL));
    else
        tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxGL));

    //PSTATE.mm is unchanged
    PSTATE |= (1 << 4); //PSTATE.pef = whether or not an fpu is present
    PSTATE &= ~(1 << 3); //PSTATE.am = 0
    PSTATE &= ~(1 << 1); //PSTATE.ie = 0
    //PSTATE.tle is unchanged
    //PSTATE.tct = 0

    if (gotoHpriv)
    {
        PSTATE &= ~(1 << 9); // PSTATE.cle = 0
        //The manual says PSTATE.priv should be 0, but Legion leaves it alone
        HPSTATE &= ~(1 << 5); //HPSTATE.red = 0
        HPSTATE |= (1 << 2); //HPSTATE.hpriv = 1
        HPSTATE &= ~(1 << 10); //HPSTATE.ibe = 0
        //HPSTATE.tlz is unchanged
        tc->setMiscRegNoEffect(MISCREG_HPSTATE, HPSTATE);
    } else { // we are going to priv
        PSTATE |= (1 << 2); //PSTATE.priv = 1
        replaceBits(PSTATE, 9, 9, PSTATE >> 8); //PSTATE.cle = PSTATE.tle
    }
    tc->setMiscRegNoEffect(MISCREG_PSTATE, PSTATE);


    bool changedCWP = true;
    if (tt == 0x24)
        CWP++;
    else if (0x80 <= tt && tt <= 0xbf)
        CWP += (CANSAVE + 2);
    else if (0xc0 <= tt && tt <= 0xff)
        CWP--;
    else
        changedCWP = false;

    if (changedCWP)
    {
        CWP = (CWP + NWindows) % NWindows;
        tc->setMiscReg(MISCREG_CWP, CWP);
    }
}

void getREDVector(MiscReg TT, Addr & PC, Addr & NPC)
{
    //XXX The following constant might belong in a header file.
    const Addr RSTVAddr = 0xFFF0000000ULL;
    PC = RSTVAddr | ((TT << 5) & 0xFF);
    NPC = PC + sizeof(MachInst);
}

void getHyperVector(ThreadContext * tc, Addr & PC, Addr & NPC, MiscReg TT)
{
    Addr HTBA = tc->readMiscRegNoEffect(MISCREG_HTBA);
    PC = (HTBA & ~mask(14)) | ((TT << 5) & mask(14));
    NPC = PC + sizeof(MachInst);
}

void getPrivVector(ThreadContext * tc, Addr & PC, Addr & NPC, MiscReg TT, MiscReg TL)
{
    Addr TBA = tc->readMiscRegNoEffect(MISCREG_TBA);
    PC = (TBA & ~mask(15)) |
        (TL > 1 ? (1 << 14) : 0) |
        ((TT << 5) & mask(14));
    NPC = PC + sizeof(MachInst);
}

#if FULL_SYSTEM

void SparcFaultBase::invoke(ThreadContext * tc)
{
    //panic("Invoking a second fault!\n");
    FaultBase::invoke(tc);
    countStat()++;

    //We can refer to this to see what the trap level -was-, but something
    //in the middle could change it in the regfile out from under us.
    MiscReg tl = tc->readMiscRegNoEffect(MISCREG_TL);
    MiscReg tt = tc->readMiscRegNoEffect(MISCREG_TT);
    MiscReg pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
    MiscReg hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);

    Addr PC, NPC;

    PrivilegeLevel current;
    if (hpstate & HPSTATE::hpriv)
        current = Hyperprivileged;
    else if (pstate & PSTATE::priv)
        current = Privileged;
    else
        current = User;

    PrivilegeLevel level = getNextLevel(current);

    if ((hpstate & HPSTATE::red) || (tl == MaxTL - 1)) {
        getREDVector(5, PC, NPC);
        doREDFault(tc, tt);
        //This changes the hpstate and pstate, so we need to make sure we
        //save the old version on the trap stack in doREDFault.
        enterREDState(tc);
    } else if (tl == MaxTL) {
        panic("Should go to error state here.. crap\n");
        //Do error_state somehow?
        //Probably inject a WDR fault using the interrupt mechanism.
        //What should the PC and NPC be set to?
    } else if (tl > MaxPTL && level == Privileged) {
        //guest_watchdog fault
        doNormalFault(tc, trapType(), true);
        getHyperVector(tc, PC, NPC, 2);
    } else if (level == Hyperprivileged ||
               (level == Privileged && trapType() >= 384)) {
        doNormalFault(tc, trapType(), true);
        getHyperVector(tc, PC, NPC, trapType());
    } else {
        doNormalFault(tc, trapType(), false);
        getPrivVector(tc, PC, NPC, trapType(), tl+1);
    }

    tc->setPC(PC);
    tc->setNextPC(NPC);
    tc->setNextNPC(NPC + sizeof(MachInst));
}

void PowerOnReset::invoke(ThreadContext * tc)
{
    //For SPARC, when a system is first started, there is a power
    //on reset Trap which sets the processor into the following state.
    //Bits that aren't set aren't defined on startup.

    tc->setMiscRegNoEffect(MISCREG_TL, MaxTL);
    tc->setMiscRegNoEffect(MISCREG_TT, trapType());
    tc->setMiscReg(MISCREG_GL, MaxGL);

    //Turn on pef and priv, set everything else to 0
    tc->setMiscRegNoEffect(MISCREG_PSTATE, (1 << 4) | (1 << 2));

    //Turn on red and hpriv, set everything else to 0
    MiscReg HPSTATE = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
    //HPSTATE.red = 1
    HPSTATE |= (1 << 5);
    //HPSTATE.hpriv = 1
    HPSTATE |= (1 << 2);
    //HPSTATE.ibe = 0
    HPSTATE &= ~(1 << 10);
    //HPSTATE.tlz = 0
    HPSTATE &= ~(1 << 0);
    tc->setMiscRegNoEffect(MISCREG_HPSTATE, HPSTATE);

    //The tick register is unreadable by nonprivileged software
    tc->setMiscRegNoEffect(MISCREG_TICK, 1ULL << 63);

    //Enter RED state. We do this last so that the actual state preserved in
    //the trap stack is the state from before this fault.
    enterREDState(tc);

    Addr PC, NPC;
    getREDVector(trapType(), PC, NPC);
    tc->setPC(PC);
    tc->setNextPC(NPC);
    tc->setNextNPC(NPC + sizeof(MachInst));

    //These registers are specified as "undefined" after a POR, and they
    //should have reasonable values after the miscregfile is reset
    /*
    // Clear all the soft interrupt bits
    softint = 0;
    // disable timer compare interrupts, reset tick_cmpr
    tc->setMiscRegNoEffect(MISCREG_
    tick_cmprFields.int_dis = 1;
    tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
    stickFields.npt = 1; //The TICK register is unreadable by by !priv
    stick_cmprFields.int_dis = 1; // disable timer compare interrupts
    stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing

    tt[tl] = _trapType;

    hintp = 0; // no interrupts pending
    hstick_cmprFields.int_dis = 1; // disable timer compare interrupts
    hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
    */
}

#else // !FULL_SYSTEM

void FastInstructionAccessMMUMiss::invoke(ThreadContext *tc)
{
    Process *p = tc->getProcessPtr();
    TlbEntry entry;
    bool success = p->pTable->lookup(vaddr, entry);
    if(!success) {
        panic("Tried to execute unmapped address %#x.\n", vaddr);
    } else {
        Addr alignedVaddr = p->pTable->pageAlign(vaddr);
        tc->getITBPtr()->insert(alignedVaddr, 0 /*partition id*/,
                p->M5_pid /*context id*/, false, entry.pte);
    }
}

void FastDataAccessMMUMiss::invoke(ThreadContext *tc)
{
    Process *p = tc->getProcessPtr();
    TlbEntry entry;
    bool success = p->pTable->lookup(vaddr, entry);
    if(!success) {
        p->checkAndAllocNextPage(vaddr);
        success = p->pTable->lookup(vaddr, entry);
    }
    if(!success) {
        panic("Tried to access unmapped address %#x.\n", vaddr);
    } else {
        Addr alignedVaddr = p->pTable->pageAlign(vaddr);
        tc->getDTBPtr()->insert(alignedVaddr, 0 /*partition id*/,
                p->M5_pid /*context id*/, false, entry.pte);
    }
}

void SpillNNormal::invoke(ThreadContext *tc)
{
    doNormalFault(tc, trapType(), false);

    Process *p = tc->getProcessPtr();

    //XXX This will only work in faults from a SparcLiveProcess
    SparcLiveProcess *lp = dynamic_cast<SparcLiveProcess *>(p);
    assert(lp);

    //Then adjust the PC and NPC
    Addr spillStart = lp->readSpillStart();
    tc->setPC(spillStart);
    tc->setNextPC(spillStart + sizeof(MachInst));
    tc->setNextNPC(spillStart + 2*sizeof(MachInst));
}

void FillNNormal::invoke(ThreadContext *tc)
{
    doNormalFault(tc, trapType(), false);

    Process * p = tc->getProcessPtr();

    //XXX This will only work in faults from a SparcLiveProcess
    SparcLiveProcess *lp = dynamic_cast<SparcLiveProcess *>(p);
    assert(lp);

    //Then adjust the PC and NPC
    Addr fillStart = lp->readFillStart();
    tc->setPC(fillStart);
    tc->setNextPC(fillStart + sizeof(MachInst));
    tc->setNextNPC(fillStart + 2*sizeof(MachInst));
}

void TrapInstruction::invoke(ThreadContext *tc)
{
    //In SE, this mechanism is how the process requests a service from the
    //operating system. We'll get the process object from the thread context
    //and let it service the request.

    Process *p = tc->getProcessPtr();

    SparcLiveProcess *lp = dynamic_cast<SparcLiveProcess *>(p);
    assert(lp);

    lp->handleTrap(_n, tc);

    //We need to explicitly advance the pc, since that's not done for us
    //on a faulting instruction
    tc->setPC(tc->readNextPC());
    tc->setNextPC(tc->readNextNPC());
    tc->setNextNPC(tc->readNextNPC() + sizeof(MachInst));
}

#endif

} // namespace SparcISA