/* * Copyright (c) 2003-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Kevin Lim */ #include "arch/sparc/faults.hh" #include #include "arch/sparc/isa_traits.hh" #include "arch/sparc/process.hh" #include "arch/sparc/tlb.hh" #include "arch/sparc/types.hh" #include "base/bitfield.hh" #include "base/trace.hh" #include "cpu/base.hh" #include "cpu/thread_context.hh" #include "mem/page_table.hh" #include "sim/full_system.hh" #include "sim/process.hh" using namespace std; namespace SparcISA { template<> SparcFaultBase::FaultVals SparcFault::vals ("power_on_reset", 0x001, 0, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("watch_dog_reset", 0x002, 120, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("externally_initiated_reset", 0x003, 110, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("software_initiated_reset", 0x004, 130, {{SH, SH, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("RED_state_exception", 0x005, 1, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("store_error", 0x007, 201, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("instruction_access_exception", 0x008, 300, {{H, H, H}}); //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals ("inst_mmu", 0x009, 2, {{H, H, H}});*/ template<> SparcFaultBase::FaultVals SparcFault::vals ("instruction_access_error", 0x00A, 400, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("illegal_instruction", 0x010, 620, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("privileged_opcode", 0x011, 700, {{P, SH, SH}}); //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals ("unimp_ldd", 0x012, 6, {{H, H, H}});*/ //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals ("unimp_std", 0x013, 6, {{H, H, H}});*/ template<> SparcFaultBase::FaultVals SparcFault::vals ("fp_disabled", 0x020, 800, {{P, P, H}}); /* SPARCv8 and SPARCv9 define just fp_disabled trap. SIMD is not contemplated * as a separate part. Therefore, we use the same code and TT */ template<> SparcFaultBase::FaultVals SparcFault::vals ("fp_disabled", 0x020, 800, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("fp_exception_ieee_754", 0x021, 1110, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("fp_exception_other", 0x022, 1110, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("tag_overflow", 0x023, 1400, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("clean_window", 0x024, 1010, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("division_by_zero", 0x028, 1500, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("internal_processor_error", 0x029, 4, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("instruction_invalid_tsb_entry", 0x02A, 210, {{H, H, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("data_invalid_tsb_entry", 0x02B, 1203, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("data_access_exception", 0x030, 1201, {{H, H, H}}); //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals ("data_mmu", 0x031, 12, {{H, H, H}});*/ template<> SparcFaultBase::FaultVals SparcFault::vals ("data_access_error", 0x032, 1210, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("data_access_protection", 0x033, 1207, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("mem_address_not_aligned", 0x034, 1020, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("LDDF_mem_address_not_aligned", 0x035, 1010, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("STDF_mem_address_not_aligned", 0x036, 1010, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("privileged_action", 0x037, 1110, {{H, H, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("LDQF_mem_address_not_aligned", 0x038, 1010, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("STQF_mem_address_not_aligned", 0x039, 1010, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("instruction_real_translation_miss", 0x03E, 208, {{H, H, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("data_real_translation_miss", 0x03F, 1203, {{H, H, H}}); //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals ("async_data", 0x040, 2, {{H, H, H}});*/ template<> SparcFaultBase::FaultVals SparcFault::vals ("interrupt_level_n", 0x040, 0, {{P, P, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("hstick_match", 0x05E, 1601, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("trap_level_zero", 0x05F, 202, {{H, H, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("interrupt_vector", 0x060, 2630, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("PA_watchpoint", 0x061, 1209, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("VA_watchpoint", 0x062, 1120, {{P, P, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("fast_instruction_access_MMU_miss", 0x064, 208, {{H, H, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("fast_data_access_MMU_miss", 0x068, 1203, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("fast_data_access_protection", 0x06C, 1207, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("instruction_break", 0x076, 610, {{H, H, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("cpu_mondo", 0x07C, 1608, {{P, P, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("dev_mondo", 0x07D, 1611, {{P, P, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("resume_error", 0x07E, 3330, {{P, P, SH}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("spill_n_normal", 0x080, 900, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("spill_n_other", 0x0A0, 900, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("fill_n_normal", 0x0C0, 900, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("fill_n_other", 0x0E0, 900, {{P, P, H}}); template<> SparcFaultBase::FaultVals SparcFault::vals ("trap_instruction", 0x100, 1602, {{P, P, H}}); /** * This causes the thread context to enter RED state. This causes the side * effects which go with entering RED state because of a trap. */ void enterREDState(ThreadContext *tc) { //@todo Disable the mmu? //@todo Disable watchpoints? HPSTATE hpstate= tc->readMiscRegNoEffect(MISCREG_HPSTATE); hpstate.red = 1; hpstate.hpriv = 1; tc->setMiscReg(MISCREG_HPSTATE, hpstate); // PSTATE.priv is set to 1 here. The manual says it should be 0, but // Legion sets it to 1. PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); pstate.priv = 1; tc->setMiscReg(MISCREG_PSTATE, pstate); } /** * This sets everything up for a RED state trap except for actually jumping to * the handler. */ void doREDFault(ThreadContext *tc, TrapType tt) { MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL); MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE); PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2); MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI); MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP); MiscReg CANSAVE = tc->readMiscRegNoEffect(NumIntArchRegs + 3); MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL); PCState pc = tc->pcState(); TL++; Addr pcMask = pstate.am ? mask(32) : mask(64); // set TSTATE.gl to gl replaceBits(TSTATE, 42, 40, GL); // set TSTATE.ccr to ccr replaceBits(TSTATE, 39, 32, CCR); // set TSTATE.asi to asi replaceBits(TSTATE, 31, 24, ASI); // set TSTATE.pstate to pstate replaceBits(TSTATE, 20, 8, pstate); // set TSTATE.cwp to cwp replaceBits(TSTATE, 4, 0, CWP); // Write back TSTATE tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE); // set TPC to PC tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask); // set TNPC to NPC tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask); // set HTSTATE.hpstate to hpstate tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate); // TT = trap type; tc->setMiscRegNoEffect(MISCREG_TT, tt); // Update GL tc->setMiscReg(MISCREG_GL, min(GL+1, MaxGL)); bool priv = pstate.priv; // just save the priv bit pstate = 0; pstate.priv = priv; pstate.pef = 1; tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); hpstate.red = 1; hpstate.hpriv = 1; hpstate.ibe = 0; hpstate.tlz = 0; tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); bool changedCWP = true; if (tt == 0x24) CWP++; else if (0x80 <= tt && tt <= 0xbf) CWP += (CANSAVE + 2); else if (0xc0 <= tt && tt <= 0xff) CWP--; else changedCWP = false; if (changedCWP) { CWP = (CWP + NWindows) % NWindows; tc->setMiscReg(MISCREG_CWP, CWP); } } /** * This sets everything up for a normal trap except for actually jumping to * the handler. */ void doNormalFault(ThreadContext *tc, TrapType tt, bool gotoHpriv) { MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL); MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE); PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2); MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI); MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP); MiscReg CANSAVE = tc->readIntReg(NumIntArchRegs + 3); MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL); PCState pc = tc->pcState(); // Increment the trap level TL++; tc->setMiscRegNoEffect(MISCREG_TL, TL); Addr pcMask = pstate.am ? mask(32) : mask(64); // Save off state // set TSTATE.gl to gl replaceBits(TSTATE, 42, 40, GL); // set TSTATE.ccr to ccr replaceBits(TSTATE, 39, 32, CCR); // set TSTATE.asi to asi replaceBits(TSTATE, 31, 24, ASI); // set TSTATE.pstate to pstate replaceBits(TSTATE, 20, 8, pstate); // set TSTATE.cwp to cwp replaceBits(TSTATE, 4, 0, CWP); // Write back TSTATE tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE); // set TPC to PC tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask); // set TNPC to NPC tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask); // set HTSTATE.hpstate to hpstate tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate); // TT = trap type; tc->setMiscRegNoEffect(MISCREG_TT, tt); // Update the global register level if (!gotoHpriv) tc->setMiscReg(MISCREG_GL, min(GL + 1, MaxPGL)); else tc->setMiscReg(MISCREG_GL, min(GL + 1, MaxGL)); // pstate.mm is unchanged pstate.pef = 1; // PSTATE.pef = whether or not an fpu is present pstate.am = 0; pstate.ie = 0; // pstate.tle is unchanged // pstate.tct = 0 if (gotoHpriv) { pstate.cle = 0; // The manual says PSTATE.priv should be 0, but Legion leaves it alone hpstate.red = 0; hpstate.hpriv = 1; hpstate.ibe = 0; // hpstate.tlz is unchanged tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); } else { // we are going to priv pstate.priv = 1; pstate.cle = pstate.tle; } tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); bool changedCWP = true; if (tt == 0x24) CWP++; else if (0x80 <= tt && tt <= 0xbf) CWP += (CANSAVE + 2); else if (0xc0 <= tt && tt <= 0xff) CWP--; else changedCWP = false; if (changedCWP) { CWP = (CWP + NWindows) % NWindows; tc->setMiscReg(MISCREG_CWP, CWP); } } void getREDVector(MiscReg TT, Addr &PC, Addr &NPC) { //XXX The following constant might belong in a header file. const Addr RSTVAddr = 0xFFF0000000ULL; PC = RSTVAddr | ((TT << 5) & 0xFF); NPC = PC + sizeof(MachInst); } void getHyperVector(ThreadContext * tc, Addr &PC, Addr &NPC, MiscReg TT) { Addr HTBA = tc->readMiscRegNoEffect(MISCREG_HTBA); PC = (HTBA & ~mask(14)) | ((TT << 5) & mask(14)); NPC = PC + sizeof(MachInst); } void getPrivVector(ThreadContext *tc, Addr &PC, Addr &NPC, MiscReg TT, MiscReg TL) { Addr TBA = tc->readMiscRegNoEffect(MISCREG_TBA); PC = (TBA & ~mask(15)) | (TL > 1 ? (1 << 14) : 0) | ((TT << 5) & mask(14)); NPC = PC + sizeof(MachInst); } void SparcFaultBase::invoke(ThreadContext * tc, const StaticInstPtr &inst) { FaultBase::invoke(tc); if (!FullSystem) return; countStat()++; // We can refer to this to see what the trap level -was-, but something // in the middle could change it in the regfile out from under us. MiscReg tl = tc->readMiscRegNoEffect(MISCREG_TL); MiscReg tt = tc->readMiscRegNoEffect(MISCREG_TT); PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); Addr PC, NPC; PrivilegeLevel current; if (hpstate.hpriv) current = Hyperprivileged; else if (pstate.priv) current = Privileged; else current = User; PrivilegeLevel level = getNextLevel(current); if (hpstate.red || (tl == MaxTL - 1)) { getREDVector(5, PC, NPC); doREDFault(tc, tt); // This changes the hpstate and pstate, so we need to make sure we // save the old version on the trap stack in doREDFault. enterREDState(tc); } else if (tl == MaxTL) { panic("Should go to error state here.. crap\n"); // Do error_state somehow? // Probably inject a WDR fault using the interrupt mechanism. // What should the PC and NPC be set to? } else if (tl > MaxPTL && level == Privileged) { // guest_watchdog fault doNormalFault(tc, trapType(), true); getHyperVector(tc, PC, NPC, 2); } else if (level == Hyperprivileged || (level == Privileged && trapType() >= 384)) { doNormalFault(tc, trapType(), true); getHyperVector(tc, PC, NPC, trapType()); } else { doNormalFault(tc, trapType(), false); getPrivVector(tc, PC, NPC, trapType(), tl + 1); } PCState pc; pc.pc(PC); pc.npc(NPC); pc.nnpc(NPC + sizeof(MachInst)); pc.upc(0); pc.nupc(1); tc->pcState(pc); } void PowerOnReset::invoke(ThreadContext *tc, const StaticInstPtr &inst) { // For SPARC, when a system is first started, there is a power // on reset Trap which sets the processor into the following state. // Bits that aren't set aren't defined on startup. tc->setMiscRegNoEffect(MISCREG_TL, MaxTL); tc->setMiscRegNoEffect(MISCREG_TT, trapType()); tc->setMiscReg(MISCREG_GL, MaxGL); PSTATE pstate = 0; pstate.pef = 1; pstate.priv = 1; tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); // Turn on red and hpriv, set everything else to 0 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); hpstate.red = 1; hpstate.hpriv = 1; hpstate.ibe = 0; hpstate.tlz = 0; tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); // The tick register is unreadable by nonprivileged software tc->setMiscRegNoEffect(MISCREG_TICK, 1ULL << 63); // Enter RED state. We do this last so that the actual state preserved in // the trap stack is the state from before this fault. enterREDState(tc); Addr PC, NPC; getREDVector(trapType(), PC, NPC); PCState pc; pc.pc(PC); pc.npc(NPC); pc.nnpc(NPC + sizeof(MachInst)); pc.upc(0); pc.nupc(1); tc->pcState(pc); // These registers are specified as "undefined" after a POR, and they // should have reasonable values after the miscregfile is reset /* // Clear all the soft interrupt bits softint = 0; // disable timer compare interrupts, reset tick_cmpr tc->setMiscRegNoEffect(MISCREG_ tick_cmprFields.int_dis = 1; tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing stickFields.npt = 1; // The TICK register is unreadable by by !priv stick_cmprFields.int_dis = 1; // disable timer compare interrupts stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing tt[tl] = _trapType; hintp = 0; // no interrupts pending hstick_cmprFields.int_dis = 1; // disable timer compare interrupts hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing */ } void FastInstructionAccessMMUMiss::invoke(ThreadContext *tc, const StaticInstPtr &inst) { if (FullSystem) { SparcFaultBase::invoke(tc, inst); return; } Process *p = tc->getProcessPtr(); const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr); panic_if(!pte, "Tried to execute unmapped address %#x.\n", vaddr); Addr alignedvaddr = p->pTable->pageAlign(vaddr); // Grab fields used during instruction translation to figure out // which context to use. uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA); // Inside a VM, a real address is the address that guest OS would // interpret to be a physical address. To map to the physical address, // it still needs to undergo a translation. The instruction // translation code in the SPARC ITLB code assumes that the context is // zero (kernel-level) if real addressing is being used. bool is_real_address = !bits(tlbdata, 4); // The SPARC ITLB code assumes that traps are executed in context // zero so we carry that assumption through here. bool trapped = bits(tlbdata, 18, 16) > 0; // The primary context acts as a PASID. It allows the MMU to // distinguish between virtual addresses that would alias to the // same physical address (if two or more processes shared the same // virtual address mapping). int primary_context = bits(tlbdata, 47, 32); // The partition id distinguishes between virtualized environments. int const partition_id = 0; // Given the assumptions in the translateInst code in the SPARC ITLB, // the logic works out to the following for the context. int context_id = (is_real_address || trapped) ? 0 : primary_context; TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr, pte->flags & EmulationPageTable::Uncacheable, pte->flags & EmulationPageTable::ReadOnly); // Insert the TLB entry. // The entry specifying whether the address is "real" is set to // false for syscall emulation mode regardless of whether the // address is real in preceding code. Not sure sure that this is // correct, but also not sure if it matters at all. dynamic_cast(tc->getITBPtr())-> insert(alignedvaddr, partition_id, context_id, false, entry.pte); } void FastDataAccessMMUMiss::invoke(ThreadContext *tc, const StaticInstPtr &inst) { if (FullSystem) { SparcFaultBase::invoke(tc, inst); return; } Process *p = tc->getProcessPtr(); const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr); if (!pte && p->fixupStackFault(vaddr)) pte = p->pTable->lookup(vaddr); panic_if(!pte, "Tried to access unmapped address %#x.\n", vaddr); Addr alignedvaddr = p->pTable->pageAlign(vaddr); // Grab fields used during data translation to figure out // which context to use. uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA); // The primary context acts as a PASID. It allows the MMU to // distinguish between virtual addresses that would alias to the // same physical address (if two or more processes shared the same // virtual address mapping). There's a secondary context used in the // DTLB translation code, but it should __probably__ be zero for // syscall emulation code. (The secondary context is used by Solaris // to allow kernel privilege code to access user space code: // [ISBN 0-13-022496-0]:PG199.) int primary_context = bits(tlbdata, 47, 32); // "Hyper-Privileged Mode" is in use. There are three main modes of // operation for Sparc: Hyper-Privileged Mode, Privileged Mode, and // User Mode. int hpriv = bits(tlbdata, 0); // Reset, Error and Debug state is in use. Something horrible has // happened or the system is operating in Reset Mode. int red = bits(tlbdata, 1); // Inside a VM, a real address is the address that guest OS would // interpret to be a physical address. To map to the physical address, // it still needs to undergo a translation. The instruction // translation code in the SPARC ITLB code assumes that the context is // zero (kernel-level) if real addressing is being used. int is_real_address = !bits(tlbdata, 5); // Grab the address space identifier register from the thread context. // XXX: Inspecting how setMiscReg and setMiscRegNoEffect behave for // MISCREG_ASI causes me to think that the ASI register implementation // might be bugged. The NoEffect variant changes the ASI register // value in the architectural state while the normal variant changes // the context field in the thread context's currently decoded request // but does not directly affect the ASI register value in the // architectural state. The ASI values and the context field in the // request packet seem to have completely different uses. MiscReg reg_asi = tc->readMiscRegNoEffect(MISCREG_ASI); ASI asi = static_cast(reg_asi); // The SPARC DTLB code assumes that traps are executed in context // zero if the asi value is ASI_IMPLICIT (which is 0x0). There's also // an assumption that the nucleus address space is being used, but // the context is the relevant issue since we need to pass it to TLB. bool trapped = bits(tlbdata, 18, 16) > 0; // Given the assumptions in the translateData code in the SPARC DTLB, // the logic works out to the following for the context. int context_id = ((!hpriv && !red && is_real_address) || asiIsReal(asi) || (trapped && asi == ASI_IMPLICIT)) ? 0 : primary_context; // The partition id distinguishes between virtualized environments. int const partition_id = 0; TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr, pte->flags & EmulationPageTable::Uncacheable, pte->flags & EmulationPageTable::ReadOnly); // Insert the TLB entry. // The entry specifying whether the address is "real" is set to // false for syscall emulation mode regardless of whether the // address is real in preceding code. Not sure sure that this is // correct, but also not sure if it matters at all. dynamic_cast(tc->getDTBPtr())-> insert(alignedvaddr, partition_id, context_id, false, entry.pte); } void SpillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst) { if (FullSystem) { SparcFaultBase::invoke(tc, inst); return; } doNormalFault(tc, trapType(), false); Process *p = tc->getProcessPtr(); SparcProcess *sp = dynamic_cast(p); assert(sp); // Then adjust the PC and NPC tc->pcState(sp->readSpillStart()); } void FillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst) { if (FullSystem) { SparcFaultBase::invoke(tc, inst); return; } doNormalFault(tc, trapType(), false); Process *p = tc->getProcessPtr(); SparcProcess *sp = dynamic_cast(p); assert(sp); // Then adjust the PC and NPC tc->pcState(sp->readFillStart()); } void TrapInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst) { if (FullSystem) { SparcFaultBase::invoke(tc, inst); return; } // In SE, this mechanism is how the process requests a service from // the operating system. We'll get the process object from the thread // context and let it service the request. Process *p = tc->getProcessPtr(); SparcProcess *sp = dynamic_cast(p); assert(sp); Fault fault; sp->handleTrap(_n, tc, &fault); // We need to explicitly advance the pc, since that's not done for us // on a faulting instruction PCState pc = tc->pcState(); pc.advance(); tc->pcState(pc); } } // namespace SparcISA