/* * Copyright (c) 2003-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Ali Saidi */ #include "arch/sparc/process.hh" #include "arch/sparc/asi.hh" #include "arch/sparc/handlers.hh" #include "arch/sparc/isa_traits.hh" #include "arch/sparc/registers.hh" #include "arch/sparc/types.hh" #include "base/loader/elf_object.hh" #include "base/loader/object_file.hh" #include "base/logging.hh" #include "cpu/thread_context.hh" #include "debug/Stack.hh" #include "mem/page_table.hh" #include "params/Process.hh" #include "sim/aux_vector.hh" #include "sim/process_impl.hh" #include "sim/syscall_return.hh" #include "sim/system.hh" using namespace std; using namespace SparcISA; static const int FirstArgumentReg = 8; SparcProcess::SparcProcess(ProcessParams *params, ObjectFile *objFile, Addr _StackBias) : Process(params, new EmulationPageTable(params->name, params->pid, PageBytes), objFile), StackBias(_StackBias) { fatal_if(params->useArchPT, "Arch page tables not implemented."); // Initialize these to 0s fillStart = 0; spillStart = 0; } void SparcProcess::handleTrap(int trapNum, ThreadContext *tc, Fault *fault) { PCState pc = tc->pcState(); switch (trapNum) { case 0x01: // Software breakpoint warn("Software breakpoint encountered at pc %#x.\n", pc.pc()); break; case 0x02: // Division by zero warn("Software signaled a division by zero at pc %#x.\n", pc.pc()); break; case 0x03: // Flush window trap flushWindows(tc); break; case 0x04: // Clean windows warn("Ignoring process request for clean register " "windows at pc %#x.\n", pc.pc()); break; case 0x05: // Range check warn("Software signaled a range check at pc %#x.\n", pc.pc()); break; case 0x06: // Fix alignment warn("Ignoring process request for os assisted unaligned accesses " "at pc %#x.\n", pc.pc()); break; case 0x07: // Integer overflow warn("Software signaled an integer overflow at pc %#x.\n", pc.pc()); break; case 0x32: // Get integer condition codes warn("Ignoring process request to get the integer condition codes " "at pc %#x.\n", pc.pc()); break; case 0x33: // Set integer condition codes warn("Ignoring process request to set the integer condition codes " "at pc %#x.\n", pc.pc()); break; default: panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum); } } void SparcProcess::initState() { Process::initState(); ThreadContext *tc = system->getThreadContext(contextIds[0]); // From the SPARC ABI // Setup default FP state tc->setMiscRegNoEffect(MISCREG_FSR, 0); tc->setMiscRegNoEffect(MISCREG_TICK, 0); /* * Register window management registers */ // No windows contain info from other programs // tc->setMiscRegNoEffect(MISCREG_OTHERWIN, 0); tc->setIntReg(NumIntArchRegs + 6, 0); // There are no windows to pop // tc->setMiscRegNoEffect(MISCREG_CANRESTORE, 0); tc->setIntReg(NumIntArchRegs + 4, 0); // All windows are available to save into // tc->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2); tc->setIntReg(NumIntArchRegs + 3, NWindows - 2); // All windows are "clean" // tc->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows); tc->setIntReg(NumIntArchRegs + 5, NWindows); // Start with register window 0 tc->setMiscReg(MISCREG_CWP, 0); // Always use spill and fill traps 0 // tc->setMiscRegNoEffect(MISCREG_WSTATE, 0); tc->setIntReg(NumIntArchRegs + 7, 0); // Set the trap level to 0 tc->setMiscRegNoEffect(MISCREG_TL, 0); // Set the ASI register to something fixed tc->setMiscReg(MISCREG_ASI, ASI_PRIMARY); // Set the MMU Primary Context Register to hold the process' pid tc->setMiscReg(MISCREG_MMU_P_CONTEXT, _pid); /* * T1 specific registers */ // Turn on the icache, dcache, dtb translation, and itb translation. tc->setMiscRegNoEffect(MISCREG_MMU_LSU_CTRL, 15); } void Sparc32Process::initState() { SparcProcess::initState(); ThreadContext *tc = system->getThreadContext(contextIds[0]); // The process runs in user mode with 32 bit addresses PSTATE pstate = 0; pstate.ie = 1; pstate.am = 1; tc->setMiscReg(MISCREG_PSTATE, pstate); argsInit(32 / 8, PageBytes); } void Sparc64Process::initState() { SparcProcess::initState(); ThreadContext *tc = system->getThreadContext(contextIds[0]); // The process runs in user mode PSTATE pstate = 0; pstate.ie = 1; tc->setMiscReg(MISCREG_PSTATE, pstate); argsInit(sizeof(IntReg), PageBytes); } template void SparcProcess::argsInit(int pageSize) { int intSize = sizeof(IntType); typedef AuxVector auxv_t; std::vector auxv; string filename; if (argv.size() < 1) filename = ""; else filename = argv[0]; // Even for a 32 bit process, the ABI says we still need to // maintain double word alignment of the stack pointer. uint64_t align = 16; // Patch the ld_bias for dynamic executables. updateBias(); // load object file into target memory objFile->loadSections(initVirtMem); enum hardwareCaps { M5_HWCAP_SPARC_FLUSH = 1, M5_HWCAP_SPARC_STBAR = 2, M5_HWCAP_SPARC_SWAP = 4, M5_HWCAP_SPARC_MULDIV = 8, M5_HWCAP_SPARC_V9 = 16, // This one should technically only be set // if there is a cheetah or cheetah_plus tlb, // but we'll use it all the time M5_HWCAP_SPARC_ULTRA3 = 32 }; const int64_t hwcap = M5_HWCAP_SPARC_FLUSH | M5_HWCAP_SPARC_STBAR | M5_HWCAP_SPARC_SWAP | M5_HWCAP_SPARC_MULDIV | M5_HWCAP_SPARC_V9 | M5_HWCAP_SPARC_ULTRA3; // Setup the auxilliary vectors. These will already have endian conversion. // Auxilliary vectors are loaded only for elf formatted executables. ElfObject * elfObject = dynamic_cast(objFile); if (elfObject) { // Bits which describe the system hardware capabilities auxv.push_back(auxv_t(M5_AT_HWCAP, hwcap)); // The system page size auxv.push_back(auxv_t(M5_AT_PAGESZ, SparcISA::PageBytes)); // Defined to be 100 in the kernel source. // Frequency at which times() increments auxv.push_back(auxv_t(M5_AT_CLKTCK, 100)); // For statically linked executables, this is the virtual address of the // program header tables if they appear in the executable image auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); // This is the size of a program header entry from the elf file. auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); // This is the number of program headers from the original elf file. auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); // This is the base address of the ELF interpreter; it should be // zero for static executables or contain the base address for // dynamic executables. auxv.push_back(auxv_t(M5_AT_BASE, getBias())); // This is hardwired to 0 in the elf loading code in the kernel auxv.push_back(auxv_t(M5_AT_FLAGS, 0)); // The entry point to the program auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); // Different user and group IDs auxv.push_back(auxv_t(M5_AT_UID, uid())); auxv.push_back(auxv_t(M5_AT_EUID, euid())); auxv.push_back(auxv_t(M5_AT_GID, gid())); auxv.push_back(auxv_t(M5_AT_EGID, egid())); // Whether to enable "secure mode" in the executable auxv.push_back(auxv_t(M5_AT_SECURE, 0)); } // Figure out how big the initial stack needs to be // The unaccounted for 8 byte 0 at the top of the stack int sentry_size = 8; // This is the name of the file which is present on the initial stack // It's purpose is to let the user space linker examine the original file. int file_name_size = filename.size() + 1; int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } // The info_block. int base_info_block_size = sentry_size + file_name_size + env_data_size + arg_data_size; int info_block_size = roundUp(base_info_block_size, align); int info_block_padding = info_block_size - base_info_block_size; // Each auxilliary vector is two words int aux_array_size = intSize * 2 * (auxv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int argv_array_size = intSize * (argv.size() + 1); int argc_size = intSize; int window_save_size = intSize * 16; // Figure out the size of the contents of the actual initial frame int frame_size = aux_array_size + envp_array_size + argv_array_size + argc_size + window_save_size; // There needs to be padding after the auxiliary vector data so that the // very bottom of the stack is aligned properly. int aligned_partial_size = roundUp(frame_size, align); int aux_padding = aligned_partial_size - frame_size; int space_needed = info_block_size + aux_padding + frame_size; memState->setStackMin(memState->getStackBase() - space_needed); memState->setStackMin(roundDown(memState->getStackMin(), align)); memState->setStackSize(memState->getStackBase() - memState->getStackMin()); // Allocate space for the stack allocateMem(roundDown(memState->getStackMin(), pageSize), roundUp(memState->getStackSize(), pageSize)); // map out initial stack contents IntType sentry_base = memState->getStackBase() - sentry_size; IntType file_name_base = sentry_base - file_name_size; IntType env_data_base = file_name_base - env_data_size; IntType arg_data_base = env_data_base - arg_data_size; IntType auxv_array_base = arg_data_base - info_block_padding - aux_array_size - aux_padding; IntType envp_array_base = auxv_array_base - envp_array_size; IntType argv_array_base = envp_array_base - argv_array_size; IntType argc_base = argv_array_base - argc_size; #if TRACING_ON IntType window_save_base = argc_base - window_save_size; #endif DPRINTF(Stack, "The addresses of items on the initial stack:\n"); DPRINTF(Stack, "%#x - sentry NULL\n", sentry_base); DPRINTF(Stack, "filename = %s\n", filename); DPRINTF(Stack, "%#x - file name\n", file_name_base); DPRINTF(Stack, "%#x - env data\n", env_data_base); DPRINTF(Stack, "%#x - arg data\n", arg_data_base); DPRINTF(Stack, "%#x - auxv array\n", auxv_array_base); DPRINTF(Stack, "%#x - envp array\n", envp_array_base); DPRINTF(Stack, "%#x - argv array\n", argv_array_base); DPRINTF(Stack, "%#x - argc \n", argc_base); DPRINTF(Stack, "%#x - window save\n", window_save_base); DPRINTF(Stack, "%#x - stack min\n", memState->getStackMin()); assert(window_save_base == memState->getStackMin()); // write contents to stack // figure out argc IntType argc = argv.size(); IntType guestArgc = SparcISA::htog(argc); // Write out the sentry void * uint64_t sentry_NULL = 0; initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size); // Write the file name initVirtMem.writeString(file_name_base, filename.c_str()); // Copy the aux stuff for (int x = 0; x < auxv.size(); x++) { initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, (uint8_t*)&(auxv[x].getAuxType()), intSize); initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, (uint8_t*)&(auxv[x].getAuxVal()), intSize); } // Write out the terminating zeroed auxilliary vector const IntType zero = 0; initVirtMem.writeBlob(auxv_array_base + intSize * 2 * auxv.size(), (uint8_t*)&zero, intSize); initVirtMem.writeBlob(auxv_array_base + intSize * (2 * auxv.size() + 1), (uint8_t*)&zero, intSize); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); // Set up space for the trap handlers into the processes address space. // Since the stack grows down and there is reserved address space abov // it, we can put stuff above it and stay out of the way. fillStart = memState->getStackBase(); spillStart = fillStart + sizeof(MachInst) * numFillInsts; ThreadContext *tc = system->getThreadContext(contextIds[0]); // Set up the thread context to start running the process // assert(NumArgumentRegs >= 2); // tc->setIntReg(ArgumentReg[0], argc); // tc->setIntReg(ArgumentReg[1], argv_array_base); tc->setIntReg(StackPointerReg, memState->getStackMin() - StackBias); // %g1 is a pointer to a function that should be run at exit. Since we // don't have anything like that, it should be set to 0. tc->setIntReg(1, 0); tc->pcState(getStartPC()); // Align the "stack_min" to a page boundary. memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); } void Sparc64Process::argsInit(int intSize, int pageSize) { SparcProcess::argsInit(pageSize); // Stuff the trap handlers into the process address space initVirtMem.writeBlob(fillStart, (uint8_t*)fillHandler64, sizeof(MachInst) * numFillInsts); initVirtMem.writeBlob(spillStart, (uint8_t*)spillHandler64, sizeof(MachInst) * numSpillInsts); } void Sparc32Process::argsInit(int intSize, int pageSize) { SparcProcess::argsInit(pageSize); // Stuff the trap handlers into the process address space initVirtMem.writeBlob(fillStart, (uint8_t*)fillHandler32, sizeof(MachInst) * numFillInsts); initVirtMem.writeBlob(spillStart, (uint8_t*)spillHandler32, sizeof(MachInst) * numSpillInsts); } void Sparc32Process::flushWindows(ThreadContext *tc) { IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3); IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4); IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6); MiscReg CWP = tc->readMiscReg(MISCREG_CWP); MiscReg origCWP = CWP; CWP = (CWP + Cansave + 2) % NWindows; while (NWindows - 2 - Cansave != 0) { if (Otherwin) { panic("Otherwin non-zero.\n"); } else { tc->setMiscReg(MISCREG_CWP, CWP); // Do the stores IntReg sp = tc->readIntReg(StackPointerReg); for (int index = 16; index < 32; index++) { uint32_t regVal = tc->readIntReg(index); regVal = htog(regVal); if (!tc->getMemProxy().tryWriteBlob( sp + (index - 16) * 4, (uint8_t *)®Val, 4)) { warn("Failed to save register to the stack when " "flushing windows.\n"); } } Canrestore--; Cansave++; CWP = (CWP + 1) % NWindows; } } tc->setIntReg(NumIntArchRegs + 3, Cansave); tc->setIntReg(NumIntArchRegs + 4, Canrestore); tc->setMiscReg(MISCREG_CWP, origCWP); } void Sparc64Process::flushWindows(ThreadContext *tc) { IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3); IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4); IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6); MiscReg CWP = tc->readMiscReg(MISCREG_CWP); MiscReg origCWP = CWP; CWP = (CWP + Cansave + 2) % NWindows; while (NWindows - 2 - Cansave != 0) { if (Otherwin) { panic("Otherwin non-zero.\n"); } else { tc->setMiscReg(MISCREG_CWP, CWP); // Do the stores IntReg sp = tc->readIntReg(StackPointerReg); for (int index = 16; index < 32; index++) { IntReg regVal = tc->readIntReg(index); regVal = htog(regVal); if (!tc->getMemProxy().tryWriteBlob( sp + 2047 + (index - 16) * 8, (uint8_t *)®Val, 8)) { warn("Failed to save register to the stack when " "flushing windows.\n"); } } Canrestore--; Cansave++; CWP = (CWP + 1) % NWindows; } } tc->setIntReg(NumIntArchRegs + 3, Cansave); tc->setIntReg(NumIntArchRegs + 4, Canrestore); tc->setMiscReg(MISCREG_CWP, origCWP); } IntReg Sparc32Process::getSyscallArg(ThreadContext *tc, int &i) { assert(i < 6); return bits(tc->readIntReg(FirstArgumentReg + i++), 31, 0); } void Sparc32Process::setSyscallArg(ThreadContext *tc, int i, IntReg val) { assert(i < 6); tc->setIntReg(FirstArgumentReg + i, bits(val, 31, 0)); } IntReg Sparc64Process::getSyscallArg(ThreadContext *tc, int &i) { assert(i < 6); return tc->readIntReg(FirstArgumentReg + i++); } void Sparc64Process::setSyscallArg(ThreadContext *tc, int i, IntReg val) { assert(i < 6); tc->setIntReg(FirstArgumentReg + i, val); } void SparcProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) { // check for error condition. SPARC syscall convention is to // indicate success/failure in reg the carry bit of the ccr // and put the return value itself in the standard return value reg (). PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); if (sysret.successful()) { // no error, clear XCC.C tc->setIntReg(NumIntArchRegs + 2, tc->readIntReg(NumIntArchRegs + 2) & 0xEE); IntReg val = sysret.returnValue(); if (pstate.am) val = bits(val, 31, 0); tc->setIntReg(ReturnValueReg, val); } else { // got an error, set XCC.C tc->setIntReg(NumIntArchRegs + 2, tc->readIntReg(NumIntArchRegs + 2) | 0x11); IntReg val = sysret.errnoValue(); if (pstate.am) val = bits(val, 31, 0); tc->setIntReg(ReturnValueReg, val); } }