/* * Copyright (c) 2012 Google * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black */ #ifndef __ARCH_X86_DECODER_HH__ #define __ARCH_X86_DECODER_HH__ #include #include #include #include "arch/x86/regs/misc.hh" #include "arch/x86/types.hh" #include "base/bitfield.hh" #include "base/logging.hh" #include "base/trace.hh" #include "base/types.hh" #include "cpu/decode_cache.hh" #include "cpu/static_inst.hh" #include "debug/Decoder.hh" namespace X86ISA { class ISA; class Decoder { private: //These are defined and documented in decoder_tables.cc static const uint8_t SizeTypeToSize[3][10]; typedef const uint8_t ByteTable[256]; static ByteTable Prefixes; static ByteTable UsesModRMOneByte; static ByteTable UsesModRMTwoByte; static ByteTable UsesModRMThreeByte0F38; static ByteTable UsesModRMThreeByte0F3A; static ByteTable ImmediateTypeOneByte; static ByteTable ImmediateTypeTwoByte; static ByteTable ImmediateTypeThreeByte0F38; static ByteTable ImmediateTypeThreeByte0F3A; static ByteTable ImmediateTypeVex[10]; protected: struct InstBytes { StaticInstPtr si; std::vector chunks; std::vector masks; int lastOffset; InstBytes() : lastOffset(0) {} }; static InstBytes dummy; //The bytes to be predecoded MachInst fetchChunk; InstBytes *instBytes; int chunkIdx; //The pc of the start of fetchChunk Addr basePC; //The pc the current instruction started at Addr origPC; //The offset into fetchChunk of current processing int offset; //The extended machine instruction being generated ExtMachInst emi; //Predecoding state X86Mode mode; X86SubMode submode; uint8_t altOp; uint8_t defOp; uint8_t altAddr; uint8_t defAddr; uint8_t stack; uint8_t getNextByte() { return ((uint8_t *)&fetchChunk)[offset]; } void getImmediate(int &collected, uint64_t ¤t, int size) { //Figure out how many bytes we still need to get for the //immediate. int toGet = size - collected; //Figure out how many bytes are left in our "buffer" int remaining = sizeof(MachInst) - offset; //Get as much as we need, up to the amount available. toGet = toGet > remaining ? remaining : toGet; //Shift the bytes we want to be all the way to the right uint64_t partialImm = fetchChunk >> (offset * 8); //Mask off what we don't want partialImm &= mask(toGet * 8); //Shift it over to overlay with our displacement. partialImm <<= (immediateCollected * 8); //Put it into our displacement current |= partialImm; //Update how many bytes we've collected. collected += toGet; consumeBytes(toGet); } void updateOffsetState() { assert(offset <= sizeof(MachInst)); if (offset == sizeof(MachInst)) { DPRINTF(Decoder, "At the end of a chunk, idx = %d, chunks = %d.\n", chunkIdx, instBytes->chunks.size()); chunkIdx++; if (chunkIdx == instBytes->chunks.size()) { outOfBytes = true; } else { offset = 0; fetchChunk = instBytes->chunks[chunkIdx]; basePC += sizeof(MachInst); } } } void consumeByte() { offset++; updateOffsetState(); } void consumeBytes(int numBytes) { offset += numBytes; updateOffsetState(); } //State machine state protected: //Whether or not we're out of bytes bool outOfBytes; //Whether we've completed generating an ExtMachInst bool instDone; //The size of the displacement value int displacementSize; //The size of the immediate value int immediateSize; //This is how much of any immediate value we've gotten. This is used //for both the actual immediate and the displacement. int immediateCollected; enum State { ResetState, FromCacheState, PrefixState, Vex2Of2State, Vex2Of3State, Vex3Of3State, VexOpcodeState, OneByteOpcodeState, TwoByteOpcodeState, ThreeByte0F38OpcodeState, ThreeByte0F3AOpcodeState, ModRMState, SIBState, DisplacementState, ImmediateState, //We should never get to this state. Getting here is an error. ErrorState }; State state; //Functions to handle each of the states State doResetState(); State doFromCacheState(); State doPrefixState(uint8_t); State doVex2Of2State(uint8_t); State doVex2Of3State(uint8_t); State doVex3Of3State(uint8_t); State doVexOpcodeState(uint8_t); State doOneByteOpcodeState(uint8_t); State doTwoByteOpcodeState(uint8_t); State doThreeByte0F38OpcodeState(uint8_t); State doThreeByte0F3AOpcodeState(uint8_t); State doModRMState(uint8_t); State doSIBState(uint8_t); State doDisplacementState(); State doImmediateState(); //Process the actual opcode found earlier, using the supplied tables. State processOpcode(ByteTable &immTable, ByteTable &modrmTable, bool addrSizedImm = false); // Process the opcode found with VEX / XOP prefix. State processExtendedOpcode(ByteTable &immTable); protected: /// Caching for decoded instruction objects. typedef MiscReg CacheKey; typedef DecodeCache::AddrMap DecodePages; DecodePages *decodePages; typedef std::unordered_map AddrCacheMap; AddrCacheMap addrCacheMap; DecodeCache::InstMap *instMap; typedef std::unordered_map< CacheKey, DecodeCache::InstMap *> InstCacheMap; static InstCacheMap instCacheMap; public: Decoder(ISA* isa = nullptr) : basePC(0), origPC(0), offset(0), outOfBytes(true), instDone(false), state(ResetState) { memset(&emi, 0, sizeof(emi)); mode = LongMode; submode = SixtyFourBitMode; emi.mode.mode = mode; emi.mode.submode = submode; altOp = 0; defOp = 0; altAddr = 0; defAddr = 0; stack = 0; instBytes = &dummy; decodePages = NULL; instMap = NULL; } void setM5Reg(HandyM5Reg m5Reg) { mode = (X86Mode)(uint64_t)m5Reg.mode; submode = (X86SubMode)(uint64_t)m5Reg.submode; emi.mode.mode = mode; emi.mode.submode = submode; altOp = m5Reg.altOp; defOp = m5Reg.defOp; altAddr = m5Reg.altAddr; defAddr = m5Reg.defAddr; stack = m5Reg.stack; AddrCacheMap::iterator amIter = addrCacheMap.find(m5Reg); if (amIter != addrCacheMap.end()) { decodePages = amIter->second; } else { decodePages = new DecodePages; addrCacheMap[m5Reg] = decodePages; } InstCacheMap::iterator imIter = instCacheMap.find(m5Reg); if (imIter != instCacheMap.end()) { instMap = imIter->second; } else { instMap = new DecodeCache::InstMap; instCacheMap[m5Reg] = instMap; } } void takeOverFrom(Decoder *old) { mode = old->mode; submode = old->submode; emi.mode.mode = mode; emi.mode.submode = submode; altOp = old->altOp; defOp = old->defOp; altAddr = old->altAddr; defAddr = old->defAddr; stack = old->stack; } void reset() { state = ResetState; } void process(); //Use this to give data to the decoder. This should be used //when there is control flow. void moreBytes(const PCState &pc, Addr fetchPC, MachInst data) { DPRINTF(Decoder, "Getting more bytes.\n"); basePC = fetchPC; offset = (fetchPC >= pc.instAddr()) ? 0 : pc.instAddr() - fetchPC; fetchChunk = data; outOfBytes = false; process(); } bool needMoreBytes() { return outOfBytes; } bool instReady() { return instDone; } void updateNPC(X86ISA::PCState &nextPC) { if (!nextPC.size()) { int size = basePC + offset - origPC; DPRINTF(Decoder, "Calculating the instruction size: " "basePC: %#x offset: %#x origPC: %#x size: %d\n", basePC, offset, origPC, size); nextPC.size(size); nextPC.npc(nextPC.pc() + size); } } public: StaticInstPtr decodeInst(ExtMachInst mach_inst); /// Decode a machine instruction. /// @param mach_inst The binary instruction to decode. /// @retval A pointer to the corresponding StaticInst object. StaticInstPtr decode(ExtMachInst mach_inst, Addr addr); StaticInstPtr decode(X86ISA::PCState &nextPC); }; } // namespace X86ISA #endif // __ARCH_X86_DECODER_HH__