// Copyright (c) 2007-2008 The Hewlett-Packard Development Company // Copyright (c) 2015 Advanced Micro Devices, Inc. // All rights reserved. // // The license below extends only to copyright in the software and shall // not be construed as granting a license to any other intellectual // property including but not limited to intellectual property relating // to a hardware implementation of the functionality of the software // licensed hereunder. You may use the software subject to the license // terms below provided that you ensure that this notice is replicated // unmodified and in its entirety in all distributions of the software, // modified or unmodified, in source code or in binary form. // // Copyright (c) 2007 The Regents of The University of Michigan // Copyright (c) 2012 Mark D. Hill and David A. Wood // Copyright (c) 2012-2013 Advanced Micro Devices, Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Gabe Black def operand_types {{ 'sb' : 'int8_t', 'ub' : 'uint8_t', 'sw' : 'int16_t', 'uw' : 'uint16_t', 'sdw' : 'int32_t', 'udw' : 'uint32_t', 'sqw' : 'int64_t', 'uqw' : 'uint64_t', 'u2qw' : 'std::array', 'sf' : 'float', 'df' : 'double', }}; let {{ def foldInt(idx, foldBit, id): return ('IntReg', 'uqw', 'INTREG_FOLDED(%s, %s)' % (idx, foldBit), 'IsInteger', id) def intReg(idx, id): return ('IntReg', 'uqw', idx, 'IsInteger', id) def impIntReg(idx, id): return ('IntReg', 'uqw', 'INTREG_IMPLICIT(%s)' % idx, 'IsInteger', id) def floatReg(idx, id): return ('FloatReg', 'df', idx, 'IsFloating', id) def ccReg(idx, id): return ('CCReg', 'uqw', idx, 'IsCC', id) def controlReg(idx, id, ctype = 'uqw'): return ('ControlReg', ctype, idx, (None, None, ['IsSerializeAfter', 'IsSerializing', 'IsNonSpeculative']), id) def squashCheckReg(idx, id, check, ctype = 'uqw'): return ('ControlReg', ctype, idx, (None, None, ['((%s) ? ' % check+ \ 'IsSquashAfter : IsSerializeAfter)', 'IsSerializing', 'IsNonSpeculative']), id) def squashCReg(idx, id, ctype = 'uqw'): return squashCheckReg(idx, id, 'true', ctype) def squashCSReg(idx, id, ctype = 'uqw'): return squashCheckReg(idx, id, 'dest == SEGMENT_REG_CS', ctype) def squashCR0Reg(idx, id, ctype = 'uqw'): return squashCheckReg(idx, id, 'dest == 0', ctype) }}; def operands {{ 'SrcReg1': foldInt('src1', 'foldOBit', 1), 'SSrcReg1': intReg('src1', 1), 'SrcReg2': foldInt('src2', 'foldOBit', 2), 'SSrcReg2': intReg('src2', 1), 'Index': foldInt('index', 'foldABit', 3), 'Base': foldInt('base', 'foldABit', 4), 'DestReg': foldInt('dest', 'foldOBit', 5), 'SDestReg': intReg('dest', 5), 'Data': foldInt('data', 'foldOBit', 6), 'DataLow': foldInt('dataLow', 'foldOBit', 6), 'DataHi': foldInt('dataHi', 'foldOBit', 6), 'ProdLow': impIntReg(0, 7), 'ProdHi': impIntReg(1, 8), 'Quotient': impIntReg(2, 9), 'Remainder': impIntReg(3, 10), 'Divisor': impIntReg(4, 11), 'DoubleBits': impIntReg(5, 11), 'Rax': intReg('(INTREG_RAX)', 12), 'Rbx': intReg('(INTREG_RBX)', 13), 'Rcx': intReg('(INTREG_RCX)', 14), 'Rdx': intReg('(INTREG_RDX)', 15), 'Rsp': intReg('(INTREG_RSP)', 16), 'Rbp': intReg('(INTREG_RBP)', 17), 'Rsi': intReg('(INTREG_RSI)', 18), 'Rdi': intReg('(INTREG_RDI)', 19), 'FpSrcReg1': floatReg('src1', 20), 'FpSrcReg2': floatReg('src2', 21), 'FpDestReg': floatReg('dest', 22), 'FpData': floatReg('data', 23), 'RIP': ('PCState', 'uqw', 'pc', (None, None, 'IsControl'), 50), 'NRIP': ('PCState', 'uqw', 'npc', (None, None, 'IsControl'), 50), 'nuIP': ('PCState', 'uqw', 'nupc', (None, None, 'IsControl'), 50), # These registers hold the condition code portion of the flag # register. The nccFlagBits version holds the rest. 'ccFlagBits': ccReg('(CCREG_ZAPS)', 60), 'cfofBits': ccReg('(CCREG_CFOF)', 61), 'dfBit': ccReg('(CCREG_DF)', 62), 'ecfBit': ccReg('(CCREG_ECF)', 63), 'ezfBit': ccReg('(CCREG_EZF)', 64), # These Pred registers are to be used where reading the portions of # condition code registers is possibly optional, depending on how the # check evaluates. There are two checks being specified, one tests if # a register needs to be read, the other tests whether the register # needs to be written to. It is unlikely that these would need to be # used in the actual operation of the instruction. It is expected # that these are used only in the flag code. # Rationale behind the checks: at times, we need to partially update # the condition code bits in a register. So we read the register even # in the case when the all the bits will be written, or none of the # bits will be written. The read predicate checks if any of the bits # would be retained, the write predicate checks if any of the bits # are being written. 'PredccFlagBits': ('CCReg', 'uqw', '(CCREG_ZAPS)', 'IsCC', 60, None, None, '''(((ext & (PFBit | AFBit | ZFBit | SFBit )) != (PFBit | AFBit | ZFBit | SFBit )) && ((ext & (PFBit | AFBit | ZFBit | SFBit )) != 0))''', '((ext & (PFBit | AFBit | ZFBit | SFBit )) != 0)'), 'PredcfofBits': ('CCReg', 'uqw', '(CCREG_CFOF)', 'IsCC', 61, None, None, '''(((ext & CFBit) == 0 || (ext & OFBit) == 0) && ((ext & (CFBit | OFBit)) != 0))''', '((ext & (CFBit | OFBit)) != 0)'), 'PreddfBit': ('CCReg', 'uqw', '(CCREG_DF)', 'IsCC', 62, None, None, '(false)', '((ext & DFBit) != 0)'), 'PredecfBit': ('CCReg', 'uqw', '(CCREG_ECF)', 'IsCC', 63, None, None, '(false)', '((ext & ECFBit) != 0)'), 'PredezfBit': ('CCReg', 'uqw', '(CCREG_EZF)', 'IsCC', 64, None, None, '(false)', '((ext & EZFBit) != 0)'), # These register should needs to be more protected so that later # instructions don't map their indexes with an old value. 'nccFlagBits': controlReg('MISCREG_RFLAGS', 65), # Registers related to the state of x87 floating point unit. 'TOP': controlReg('MISCREG_X87_TOP', 66, ctype='ub'), 'FSW': controlReg('MISCREG_FSW', 67, ctype='uw'), 'FTW': controlReg('MISCREG_FTW', 68, ctype='uw'), 'FCW': controlReg('MISCREG_FCW', 69, ctype='uw'), # The segment base as used by memory instructions. 'SegBase': controlReg('MISCREG_SEG_EFF_BASE(segment)', 70), # Operands to get and set registers indexed by the operands of the # original instruction. 'ControlDest': squashCR0Reg('MISCREG_CR(dest)', 100), 'ControlSrc1': controlReg('MISCREG_CR(src1)', 101), 'DebugDest': controlReg('MISCREG_DR(dest)', 102), 'DebugSrc1': controlReg('MISCREG_DR(src1)', 103), 'SegBaseDest': squashCSReg('MISCREG_SEG_BASE(dest)', 104), 'SegBaseSrc1': controlReg('MISCREG_SEG_BASE(src1)', 105), 'SegLimitDest': squashCSReg('MISCREG_SEG_LIMIT(dest)', 106), 'SegLimitSrc1': controlReg('MISCREG_SEG_LIMIT(src1)', 107), 'SegSelDest': controlReg('MISCREG_SEG_SEL(dest)', 108), 'SegSelSrc1': controlReg('MISCREG_SEG_SEL(src1)', 109), 'SegAttrDest': squashCSReg('MISCREG_SEG_ATTR(dest)', 110), 'SegAttrSrc1': controlReg('MISCREG_SEG_ATTR(src1)', 111), # Operands to access specific control registers directly. 'EferOp': squashCReg('MISCREG_EFER', 200), 'CR4Op': controlReg('MISCREG_CR4', 201), 'DR7Op': controlReg('MISCREG_DR7', 202), 'LDTRBase': controlReg('MISCREG_TSL_BASE', 203), 'LDTRLimit': controlReg('MISCREG_TSL_LIMIT', 204), 'LDTRSel': controlReg('MISCREG_TSL', 205), 'GDTRBase': controlReg('MISCREG_TSG_BASE', 206), 'GDTRLimit': controlReg('MISCREG_TSG_LIMIT', 207), 'CSBase': squashCReg('MISCREG_CS_EFF_BASE', 208), 'CSAttr': squashCReg('MISCREG_CS_ATTR', 209), 'MiscRegDest': controlReg('dest', 210), 'MiscRegSrc1': controlReg('src1', 211), 'TscOp': controlReg('MISCREG_TSC', 212), 'M5Reg': squashCReg('MISCREG_M5_REG', 213), 'Mem': ('Mem', 'uqw', None, \ ('IsMemRef', 'IsLoad', 'IsStore'), 300) }};