// -*- mode:c++ -*- // Copyright (c) 2007 The Hewlett-Packard Development Company // All rights reserved. // // The license below extends only to copyright in the software and shall // not be construed as granting a license to any other intellectual // property including but not limited to intellectual property relating // to a hardware implementation of the functionality of the software // licensed hereunder. You may use the software subject to the license // terms below provided that you ensure that this notice is replicated // unmodified and in its entirety in all distributions of the software, // modified or unmodified, in source code or in binary form. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Gabe Black //////////////////////////////////////////////////////////////////// // // Code to "specialize" a microcode sequence to use a particular // variety of operands // let {{ # This code builds up a decode block which decodes based on switchval. # vals is a dict which matches case values with what should be decoded to. # Each element of the dict is a list containing a function and then the # arguments to pass to it. def doSplitDecode(switchVal, vals, default = None): blocks = OutputBlocks() blocks.decode_block = 'switch(%s) {\n' % switchVal for (val, todo) in vals.items(): new_blocks = todo[0](*todo[1:]) new_blocks.decode_block = \ '\tcase %s: %s\n' % (val, new_blocks.decode_block) blocks.append(new_blocks) if default: new_blocks = default[0](*default[1:]) new_blocks.decode_block = \ '\tdefault: %s\n' % new_blocks.decode_block blocks.append(new_blocks) blocks.decode_block += '}\n' return blocks }}; let {{ def doRipRelativeDecode(Name, opTypes, env): # print "RIPing %s with opTypes %s" % (Name, opTypes) env.memoryInst = True normEnv = copy.copy(env) normEnv.addToDisassembly( '''printMem(out, env.seg, env.scale, env.index, env.base, machInst.displacement, env.addressSize, false);''') normBlocks = specializeInst(Name + "_M", copy.copy(opTypes), normEnv) ripEnv = copy.copy(env) ripEnv.addToDisassembly( '''printMem(out, env.seg, 1, 0, 0, machInst.displacement, env.addressSize, true);''') ripBlocks = specializeInst(Name + "_P", copy.copy(opTypes), ripEnv) blocks = OutputBlocks() blocks.append(normBlocks) blocks.append(ripBlocks) blocks.decode_block = ''' if(machInst.modRM.mod == 0 && machInst.modRM.rm == 5 && machInst.mode.submode == SixtyFourBitMode) { %s } else { %s }''' % \ (ripBlocks.decode_block, normBlocks.decode_block) return blocks }}; let {{ def doBadInstDecode(): blocks = OutputBlocks() blocks.decode_block = ''' return new Unknown(machInst); ''' return blocks }}; let {{ class OpType(object): parser = re.compile(r"(?P[A-Z]+)(?P[a-z]*)|(r(?P[A-Z0-9]+)(?P[a-z]*))") def __init__(self, opTypeString): match = OpType.parser.search(opTypeString) if match == None: raise Exception, "Problem parsing operand type %s" % opTypeString self.reg = match.group("reg") self.tag = match.group("tag") self.size = match.group("size") if not self.size: self.size = match.group("rsize") ModRMRegIndex = "(MODRM_REG | (REX_R << 3))" ModRMRMIndex = "(MODRM_RM | (REX_B << 3))" InstRegIndex = "(OPCODE_OP_BOTTOM3 | (REX_B << 3))" # This function specializes the given piece of code to use a particular # set of argument types described by "opTypes". def specializeInst(Name, opTypes, env): # print "Specializing %s with opTypes %s" % (Name, opTypes) while len(opTypes): # Parse the operand type string we're working with opType = OpType(opTypes[0]) opTypes.pop(0) if opType.tag not in ("I", "J", "P", "PR", "Q", "V", "VR", "W"): if opType.size: env.setSize(opType.size) if opType.reg: #Figure out what to do with fixed register operands #This is the index to use, so we should stick it some place. if opType.reg in ("A", "B", "C", "D"): regString = "INTREG_R%sX" % opType.reg else: regString = "INTREG_R%s" % opType.reg env.addReg(regString) env.addToDisassembly( "printReg(out, InstRegIndex(%s), regSize);\n" % regString) Name += "_R" elif opType.tag == "B": # This refers to registers whose index is encoded as part of the opcode env.addToDisassembly( "printReg(out, InstRegIndex(%s), regSize);\n" % InstRegIndex) Name += "_R" env.addReg(InstRegIndex) elif opType.tag == "M": # This refers to memory. The macroop constructor sets up modrm # addressing. Non memory modrm settings should cause an error. env.doModRM = True return doSplitDecode("MODRM_MOD", {"3" : (doBadInstDecode,) }, (doRipRelativeDecode, Name, opTypes, env)) elif opType.tag == None or opType.size == None: raise Exception, "Problem parsing operand tag: %s" % opType.tag elif opType.tag == "C": # A control register indexed by the "reg" field env.addReg(ModRMRegIndex) env.addToDisassembly( "ccprintf(out, \"CR%%d\", %s);\n" % ModRMRegIndex) Name += "_C" elif opType.tag == "D": # A debug register indexed by the "reg" field env.addReg(ModRMRegIndex) env.addToDisassembly( "ccprintf(out, \"DR%%d\", %s);\n" % ModRMRegIndex) Name += "_D" elif opType.tag == "S": # A segment selector register indexed by the "reg" field env.addReg(ModRMRegIndex) env.addToDisassembly( "printSegment(out, %s);\n" % ModRMRegIndex) Name += "_S" elif opType.tag in ("G", "P", "T", "V"): # Use the "reg" field of the ModRM byte to select the register env.addReg(ModRMRegIndex) env.addToDisassembly( "printReg(out, InstRegIndex(%s), regSize);\n" % ModRMRegIndex) if opType.tag == "P": Name += "_MMX" elif opType.tag == "V": Name += "_XMM" else: Name += "_R" elif opType.tag in ("E", "Q", "W"): # This might refer to memory or to a register. We need to # divide it up farther. regEnv = copy.copy(env) regEnv.addReg(ModRMRMIndex) regEnv.addToDisassembly( "printReg(out, InstRegIndex(%s), regSize);\n" % ModRMRMIndex) # This refers to memory. The macroop constructor should set up # modrm addressing. memEnv = copy.copy(env) memEnv.doModRM = True regSuffix = "_R" if opType.tag == "Q": regSuffix = "_MMX" elif opType.tag == "W": regSuffix = "_XMM" return doSplitDecode("MODRM_MOD", {"3" : (specializeInst, Name + regSuffix, copy.copy(opTypes), regEnv)}, (doRipRelativeDecode, Name, copy.copy(opTypes), memEnv)) elif opType.tag in ("I", "J"): # Immediates env.addToDisassembly( "ccprintf(out, \"%#x\", machInst.immediate);\n") Name += "_I" elif opType.tag == "O": # Immediate containing a memory offset Name += "_MI" elif opType.tag in ("PR", "R", "VR"): # Non register modrm settings should cause an error env.addReg(ModRMRMIndex) env.addToDisassembly( "printReg(out, InstRegIndex(%s), regSize);\n" % ModRMRMIndex) if opType.tag == "PR": Name += "_MMX" elif opType.tag == "VR": Name += "_XMM" else: Name += "_R" elif opType.tag in ("X", "Y"): # This type of memory addressing is for string instructions. # They'll use the right index and segment internally. if opType.tag == "X": env.addToDisassembly( '''printMem(out, env.seg, 1, X86ISA::ZeroReg, X86ISA::INTREG_RSI, 0, env.addressSize, false);''') else: env.addToDisassembly( '''printMem(out, SEGMENT_REG_ES, 1, X86ISA::ZeroReg, X86ISA::INTREG_RDI, 0, env.addressSize, false);''') Name += "_M" else: raise Exception, "Unrecognized tag %s." % opType.tag # Generate code to return a macroop of the given name which will # operate in the "emulation environment" env return genMacroop(Name, env) }};