/* * Copyright (c) 2007 The Hewlett-Packard Development Company * Copyright (c) 2018 TU Dresden * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Maximilian Stein */ #include "arch/x86/system.hh" #include "arch/x86/bios/intelmp.hh" #include "arch/x86/bios/smbios.hh" #include "arch/x86/faults.hh" #include "arch/x86/isa_traits.hh" #include "base/loader/object_file.hh" #include "cpu/thread_context.hh" #include "params/X86System.hh" using namespace X86ISA; X86System::X86System(Params *p) : System(p), smbiosTable(p->smbios_table), mpFloatingPointer(p->intel_mp_pointer), mpConfigTable(p->intel_mp_table), rsdp(p->acpi_description_table_pointer) { } void X86ISA::installSegDesc(ThreadContext *tc, SegmentRegIndex seg, SegDescriptor desc, bool longmode) { bool honorBase = !longmode || seg == SEGMENT_REG_FS || seg == SEGMENT_REG_GS || seg == SEGMENT_REG_TSL || seg == SYS_SEGMENT_REG_TR; SegAttr attr = 0; attr.dpl = desc.dpl; attr.unusable = 0; attr.defaultSize = desc.d; attr.longMode = desc.l; attr.avl = desc.avl; attr.granularity = desc.g; attr.present = desc.p; attr.system = desc.s; attr.type = desc.type; if (desc.s) { if (desc.type.codeOrData) { // Code segment attr.expandDown = 0; attr.readable = desc.type.r; attr.writable = 0; } else { // Data segment attr.expandDown = desc.type.e; attr.readable = 1; attr.writable = desc.type.w; } } else { attr.readable = 1; attr.writable = 1; attr.expandDown = 0; } tc->setMiscReg(MISCREG_SEG_BASE(seg), desc.base); tc->setMiscReg(MISCREG_SEG_EFF_BASE(seg), honorBase ? desc.base : 0); tc->setMiscReg(MISCREG_SEG_LIMIT(seg), desc.limit); tc->setMiscReg(MISCREG_SEG_ATTR(seg), (RegVal)attr); } void X86System::initState() { System::initState(); for (auto *tc: threadContexts) { X86ISA::InitInterrupt(0).invoke(tc); if (tc->contextId() == 0) { tc->activate(); } else { // This is an application processor (AP). It should be initialized // to look like only the BIOS POST has run on it and put then put // it into a halted state. tc->suspend(); } } if (!kernel) fatal("No kernel to load.\n"); if (kernel->getArch() == ObjectFile::I386) fatal("Loading a 32 bit x86 kernel is not supported.\n"); ThreadContext *tc = threadContexts[0]; // This is the boot strap processor (BSP). Initialize it to look like // the boot loader has just turned control over to the 64 bit OS. We // won't actually set up real mode or legacy protected mode descriptor // tables because we aren't executing any code that would require // them. We do, however toggle the control bits in the correct order // while allowing consistency checks and the underlying mechansims // just to be safe. const int NumPDTs = 4; const Addr PageMapLevel4 = 0x70000; const Addr PageDirPtrTable = 0x71000; const Addr PageDirTable[NumPDTs] = {0x72000, 0x73000, 0x74000, 0x75000}; const Addr GDTBase = 0x76000; const int PML4Bits = 9; const int PDPTBits = 9; const int PDTBits = 9; /* * Set up the gdt. */ uint8_t numGDTEntries = 0; // Place holder at selector 0 uint64_t nullDescriptor = 0; physProxy.writeBlob(GDTBase + numGDTEntries * 8, &nullDescriptor, 8); numGDTEntries++; SegDescriptor initDesc = 0; initDesc.type.codeOrData = 0; // code or data type initDesc.type.c = 0; // conforming initDesc.type.r = 1; // readable initDesc.dpl = 0; // privilege initDesc.p = 1; // present initDesc.l = 1; // longmode - 64 bit initDesc.d = 0; // operand size initDesc.g = 1; // granularity initDesc.s = 1; // system segment initDesc.limit = 0xFFFFFFFF; initDesc.base = 0; // 64 bit code segment SegDescriptor csDesc = initDesc; csDesc.type.codeOrData = 1; csDesc.dpl = 0; // Because we're dealing with a pointer and I don't think it's // guaranteed that there isn't anything in a nonvirtual class between // it's beginning in memory and it's actual data, we'll use an // intermediary. uint64_t csDescVal = csDesc; physProxy.writeBlob(GDTBase + numGDTEntries * 8, (&csDescVal), 8); numGDTEntries++; SegSelector cs = 0; cs.si = numGDTEntries - 1; tc->setMiscReg(MISCREG_CS, (RegVal)cs); // 32 bit data segment SegDescriptor dsDesc = initDesc; uint64_t dsDescVal = dsDesc; physProxy.writeBlob(GDTBase + numGDTEntries * 8, (&dsDescVal), 8); numGDTEntries++; SegSelector ds = 0; ds.si = numGDTEntries - 1; tc->setMiscReg(MISCREG_DS, (RegVal)ds); tc->setMiscReg(MISCREG_ES, (RegVal)ds); tc->setMiscReg(MISCREG_FS, (RegVal)ds); tc->setMiscReg(MISCREG_GS, (RegVal)ds); tc->setMiscReg(MISCREG_SS, (RegVal)ds); tc->setMiscReg(MISCREG_TSL, 0); tc->setMiscReg(MISCREG_TSG_BASE, GDTBase); tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1); SegDescriptor tssDesc = initDesc; uint64_t tssDescVal = tssDesc; physProxy.writeBlob(GDTBase + numGDTEntries * 8, (&tssDescVal), 8); numGDTEntries++; SegSelector tss = 0; tss.si = numGDTEntries - 1; tc->setMiscReg(MISCREG_TR, (RegVal)tss); installSegDesc(tc, SYS_SEGMENT_REG_TR, tssDesc, true); /* * Identity map the first 4GB of memory. In order to map this region * of memory in long mode, there needs to be one actual page map level * 4 entry which points to one page directory pointer table which * points to 4 different page directory tables which are full of two * megabyte pages. All of the other entries in valid tables are set * to indicate that they don't pertain to anything valid and will * cause a fault if used. */ // Put valid values in all of the various table entries which indicate // that those entries don't point to further tables or pages. Then // set the values of those entries which are needed. // Page Map Level 4 // read/write, user, not present uint64_t pml4e = htole(0x6); for (int offset = 0; offset < (1 << PML4Bits) * 8; offset += 8) { physProxy.writeBlob(PageMapLevel4 + offset, (&pml4e), 8); } // Point to the only PDPT pml4e = htole(0x7 | PageDirPtrTable); physProxy.writeBlob(PageMapLevel4, (&pml4e), 8); // Page Directory Pointer Table // read/write, user, not present uint64_t pdpe = htole(0x6); for (int offset = 0; offset < (1 << PDPTBits) * 8; offset += 8) physProxy.writeBlob(PageDirPtrTable + offset, &pdpe, 8); // Point to the PDTs for (int table = 0; table < NumPDTs; table++) { pdpe = htole(0x7 | PageDirTable[table]); physProxy.writeBlob(PageDirPtrTable + table * 8, &pdpe, 8); } // Page Directory Tables Addr base = 0; const Addr pageSize = 2 << 20; for (int table = 0; table < NumPDTs; table++) { for (int offset = 0; offset < (1 << PDTBits) * 8; offset += 8) { // read/write, user, present, 4MB uint64_t pdte = htole(0x87 | base); physProxy.writeBlob(PageDirTable[table] + offset, &pdte, 8); base += pageSize; } } /* * Transition from real mode all the way up to Long mode */ CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0); // Turn off paging. cr0.pg = 0; tc->setMiscReg(MISCREG_CR0, cr0); // Turn on protected mode. cr0.pe = 1; tc->setMiscReg(MISCREG_CR0, cr0); CR4 cr4 = tc->readMiscRegNoEffect(MISCREG_CR4); // Turn on pae. cr4.pae = 1; tc->setMiscReg(MISCREG_CR4, cr4); // Point to the page tables. tc->setMiscReg(MISCREG_CR3, PageMapLevel4); Efer efer = tc->readMiscRegNoEffect(MISCREG_EFER); // Enable long mode. efer.lme = 1; tc->setMiscReg(MISCREG_EFER, efer); // Start using longmode segments. installSegDesc(tc, SEGMENT_REG_CS, csDesc, true); installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true); installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true); installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true); installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true); installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true); // Activate long mode. cr0.pg = 1; tc->setMiscReg(MISCREG_CR0, cr0); tc->pcState(tc->getSystemPtr()->kernelEntry); // We should now be in long mode. Yay! Addr ebdaPos = 0xF0000; Addr fixed, table; // Write out the SMBios/DMI table. writeOutSMBiosTable(ebdaPos, fixed, table); ebdaPos += (fixed + table); ebdaPos = roundUp(ebdaPos, 16); // Write out the Intel MP Specification configuration table. writeOutMPTable(ebdaPos, fixed, table); ebdaPos += (fixed + table); } void X86System::writeOutSMBiosTable(Addr header, Addr &headerSize, Addr &structSize, Addr table) { // If the table location isn't specified, just put it after the header. // The header size as of the 2.5 SMBios specification is 0x1F bytes. if (!table) table = header + 0x1F; smbiosTable->setTableAddr(table); smbiosTable->writeOut(physProxy, header, headerSize, structSize); // Do some bounds checking to make sure we at least didn't step on // ourselves. assert(header > table || header + headerSize <= table); assert(table > header || table + structSize <= header); } void X86System::writeOutMPTable(Addr fp, Addr &fpSize, Addr &tableSize, Addr table) { // If the table location isn't specified and it exists, just put // it after the floating pointer. The fp size as of the 1.4 Intel MP // specification is 0x10 bytes. if (mpConfigTable) { if (!table) table = fp + 0x10; mpFloatingPointer->setTableAddr(table); } fpSize = mpFloatingPointer->writeOut(physProxy, fp); if (mpConfigTable) tableSize = mpConfigTable->writeOut(physProxy, table); else tableSize = 0; // Do some bounds checking to make sure we at least didn't step on // ourselves and the fp structure was the size we thought it was. assert(fp > table || fp + fpSize <= table); assert(table > fp || table + tableSize <= fp); assert(fpSize == 0x10); } X86System::~X86System() { delete smbiosTable; } X86System * X86SystemParams::create() { return new X86System(this); }