/* * Copyright (c) 2007-2008 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black */ #ifndef __BASE_BITUNION_HH__ #define __BASE_BITUNION_HH__ #include #include #include #include #include "base/bitfield.hh" // The following implements the BitUnion system of defining bitfields //on top of an underlying class. This is done through the pervasive use of //both named and unnamed unions which all contain the same actual storage. //Since they're unioned with each other, all of these storage locations //overlap. This allows all of the bitfields to manipulate the same data //without having to have access to each other. More details are provided with //the individual components. //This class wraps around another which defines getter/setter functions which //manipulate the underlying data. The type of the underlying data and the type //of the bitfield itself are inferred from the argument types of the setter //function. template class BitfieldTypeImpl : public Base { static_assert(std::is_empty::value, "Bitfield base class must be empty."); private: struct TypeDeducer { template struct T; template struct T { typedef Type1 Storage; typedef Type2 Type; }; struct Wrapper : public Base { using Base::setter; }; typedef typename T::Storage Storage; typedef typename T::Type Type; }; protected: typedef typename TypeDeducer::Storage Storage; typedef typename TypeDeducer::Type Type; Type getter(const Storage &storage) const = delete; void setter(Storage &storage, Type val) = delete; Storage __storage; operator Type () const { return Base::getter(__storage); } Type operator=(const Type val) { Base::setter(__storage, val); return val; } Type operator=(BitfieldTypeImpl const & other) { return *this = (Type)other; } }; //A wrapper for the above class which allows setting and getting. template class BitfieldType : public BitfieldTypeImpl { protected: using Impl = BitfieldTypeImpl; using typename Impl::Type; public: operator Type () const { return Impl::operator Type(); } Type operator=(const Type val) { return Impl::operator=(val); } Type operator=(BitfieldType const & other) { return Impl::operator=(other); } }; //A wrapper which only supports getting. template class BitfieldROType : public BitfieldTypeImpl { public: using Impl = BitfieldTypeImpl; using typename Impl::Type; Type operator=(BitfieldROType const &other) = delete; operator Type () const { return Impl::operator Type(); } }; //A wrapper which only supports setting. template class BitfieldWOType : public BitfieldTypeImpl { protected: using Impl = BitfieldTypeImpl; using typename Impl::Type; public: Type operator=(const Type val) { return Impl::operator=(val); } Type operator=(BitfieldWOType const & other) { return Impl::operator=(other); } }; //This namespace is for classes which implement the backend of the BitUnion //stuff. Don't use any of these directly. namespace BitfieldBackend { template class Unsigned { static_assert(first >= last, "Bitfield ranges must be specified as "); protected: uint64_t getter(const Storage &storage) const { return bits(storage, first, last); } void setter(Storage &storage, uint64_t val) { replaceBits(storage, first, last, val); } }; template class Signed { static_assert(first >= last, "Bitfield ranges must be specified as "); protected: int64_t getter(const Storage &storage) const { return sext(bits(storage, first, last)); } void setter(Storage &storage, int64_t val) { replaceBits(storage, first, last, val); } }; //This class contains the basic bitfield types which are automatically //available within a BitUnion. They inherit their Storage type from the //containing BitUnion. template class BitfieldTypes { protected: template using Bitfield = BitfieldType >; template using BitfieldRO = BitfieldROType >; template using BitfieldWO = BitfieldWOType >; template using SignedBitfield = BitfieldType >; template using SignedBitfieldRO = BitfieldROType >; template using SignedBitfieldWO = BitfieldWOType >; }; //When a BitUnion is set up, an underlying class is created which holds //the actual union. This class then inherits from it, and provids the //implementations for various operators. Setting things up this way //prevents having to redefine these functions in every different BitUnion //type. More operators could be implemented in the future, as the need //arises. template class BitUnionOperators : public Base { static_assert(sizeof(Base) == sizeof(typename Base::__StorageType), "BitUnion larger than its storage type."); public: BitUnionOperators(typename Base::__StorageType const &val) { Base::__storage = val; } BitUnionOperators() {} operator const typename Base::__StorageType () const { return Base::__storage; } typename Base::__StorageType operator=(typename Base::__StorageType const &val) { Base::__storage = val; return val; } typename Base::__StorageType operator=(BitUnionOperators const &other) { Base::__storage = other; return Base::__storage; } bool operator<(Base const &base) const { return Base::__storage < base.__storage; } bool operator==(Base const &base) const { return Base::__storage == base.__storage; } }; } //This macro is a backend for other macros that specialize it slightly. //First, it creates/extends a namespace "BitfieldUnderlyingClasses" and //sticks the class which has the actual union in it, which //BitfieldOperators above inherits from. Putting these classes in a special //namespace ensures that there will be no collisions with other names as long //as the BitUnion names themselves are all distinct and nothing else uses //the BitfieldUnderlyingClasses namespace, which is unlikely. The class itself //creates a typedef of the "type" parameter called __StorageType. This allows //the type to propagate outside of the macro itself in a controlled way. //Finally, the base storage is defined which BitfieldOperators will refer to //in the operators it defines. This macro is intended to be followed by //bitfield definitions which will end up inside it's union. As explained //above, these is overlayed the __storage member in its entirety by each of the //bitfields which are defined in the union, creating shared storage with no //overhead. #define __BitUnion(type, name) \ class BitfieldUnderlyingClasses##name : \ public BitfieldBackend::BitfieldTypes \ { \ protected: \ typedef type __StorageType; \ friend BitfieldBackend::BitUnionBaseType< \ BitfieldBackend::BitUnionOperators< \ BitfieldUnderlyingClasses##name> >; \ friend BitfieldBackend::BitUnionBaseType< \ BitfieldUnderlyingClasses##name>; \ public: \ union { \ type __storage; //This closes off the class and union started by the above macro. It is //followed by a typedef which makes "name" refer to a BitfieldOperator //class inheriting from the class and union just defined, which completes //building up the type for the user. #define EndBitUnion(name) \ }; \ }; \ typedef BitfieldBackend::BitUnionOperators< \ BitfieldUnderlyingClasses##name> name; //This sets up a bitfield which has other bitfields nested inside of it. The //__storage member functions like the "underlying storage" of the top level //BitUnion. Like everything else, it overlays with the top level storage, so //making it a regular bitfield type makes the entire thing function as a //regular bitfield when referred to by itself. #define __SubBitUnion(name, fieldType, ...) \ class \ { \ public: \ union { \ fieldType<__VA_ARGS__> __storage; //This closes off the union created above and gives it a name. Unlike the top //level BitUnion, we're interested in creating an object instead of a type. //The operators are defined in the macro itself instead of a class for //technical reasons. If someone determines a way to move them to one, please //do so. #define EndSubBitUnion(name) \ }; \ inline operator __StorageType () const \ { return __storage; } \ \ inline __StorageType operator = (const __StorageType & _storage) \ { return __storage = _storage;} \ } name; //Regular bitfields //These define macros for read/write regular bitfield based subbitfields. #define SubBitUnion(name, first, last) \ __SubBitUnion(name, Bitfield, first, last) //Regular bitfields //These define macros for read/write regular bitfield based subbitfields. #define SignedSubBitUnion(name, first, last) \ __SubBitUnion(name, SignedBitfield, first, last) //Use this to define an arbitrary type overlayed with bitfields. #define BitUnion(type, name) __BitUnion(type, name) //Use this to define conveniently sized values overlayed with bitfields. #define BitUnion64(name) __BitUnion(uint64_t, name) #define BitUnion32(name) __BitUnion(uint32_t, name) #define BitUnion16(name) __BitUnion(uint16_t, name) #define BitUnion8(name) __BitUnion(uint8_t, name) //These templates make it possible to define other templates related to //BitUnions without having to refer to internal typedefs or the BitfieldBackend //namespace. //To build a template specialization which works for all BitUnions, accept a //template argument T, and then use BitUnionType as an argument in the //template. To refer to the basic type the BitUnion wraps, use //BitUnionBaseType. //For example: //template //void func(BitUnionType u) { BitUnionBaseType b = u; } //Also, BitUnionBaseType can be used on a BitUnion type directly. template using BitUnionType = BitfieldBackend::BitUnionOperators; namespace BitfieldBackend { template struct BitUnionBaseType { typedef typename BitUnionType::__StorageType Type; }; template struct BitUnionBaseType > { typedef typename BitUnionType::__StorageType Type; }; } template using BitUnionBaseType = typename BitfieldBackend::BitUnionBaseType::Type; //An STL style hash structure for hashing BitUnions based on their base type. namespace std { template struct hash > : public hash > { size_t operator() (const BitUnionType &val) const { return hash >::operator()(val); } }; } namespace BitfieldBackend { template static inline std::ostream & bitfieldBackendPrinter(std::ostream &os, const T &t) { os << t; return os; } //Since BitUnions are generally numerical values and not character codes, //these specializations attempt to ensure that they get cast to integers //of the appropriate type before printing. template <> inline std::ostream & bitfieldBackendPrinter(std::ostream &os, const char &t) { os << (int)t; return os; } template <> inline std::ostream & bitfieldBackendPrinter(std::ostream &os, const unsigned char &t) { os << (unsigned int)t; return os; } } //A default << operator which casts a bitunion to its underlying type and //passes it to BitfieldBackend::bitfieldBackendPrinter. template std::ostream & operator << (std::ostream &os, const BitUnionType &bu) { return BitfieldBackend::bitfieldBackendPrinter( os, (BitUnionBaseType)bu); } #endif // __BASE_BITUNION_HH__