/* * Copyright (c) 2013 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2002-2005 The Regents of The University of Michigan * Copyright (c) 2010 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert * Steve Reinhardt * Gabe Black * Geoffrey Blake */ #ifndef __BASE_INET_HH__ #define __BASE_INET_HH__ #include #include #include #include #include "base/types.hh" #include "dev/net/etherpkt.hh" #include "dnet/os.h" #include "dnet/eth.h" #include "dnet/ip.h" #include "dnet/ip6.h" #include "dnet/addr.h" #include "dnet/arp.h" #include "dnet/icmp.h" #include "dnet/tcp.h" #include "dnet/udp.h" #include "dnet/intf.h" #include "dnet/route.h" #include "dnet/fw.h" #include "dnet/blob.h" #include "dnet/rand.h" namespace Net { /* * Ethernet Stuff */ struct EthAddr : protected eth_addr { protected: void parse(const std::string &addr); public: EthAddr(); EthAddr(const uint8_t ea[ETH_ADDR_LEN]); EthAddr(const eth_addr &ea); EthAddr(const std::string &addr); const EthAddr &operator=(const eth_addr &ea); const EthAddr &operator=(const std::string &addr); int size() const { return sizeof(eth_addr); } const uint8_t *bytes() const { return &data[0]; } uint8_t *bytes() { return &data[0]; } const uint8_t *addr() const { return &data[0]; } bool unicast() const { return !(data[0] & 0x01); } bool multicast() const { return !unicast() && !broadcast(); } bool broadcast() const { bool isBroadcast = true; for (int i = 0; i < ETH_ADDR_LEN; ++i) { isBroadcast = isBroadcast && data[i] == 0xff; } return isBroadcast; } std::string string() const; operator uint64_t() const { uint64_t reg = 0; reg |= ((uint64_t)data[0]) << 40; reg |= ((uint64_t)data[1]) << 32; reg |= ((uint64_t)data[2]) << 24; reg |= ((uint64_t)data[3]) << 16; reg |= ((uint64_t)data[4]) << 8; reg |= ((uint64_t)data[5]) << 0; return reg; } }; std::ostream &operator<<(std::ostream &stream, const EthAddr &ea); bool operator==(const EthAddr &left, const EthAddr &right); struct EthHdr : public eth_hdr { bool isVlan() const { return (ntohs(eth_type) == ETH_TYPE_8021Q); } uint16_t type() const { if (!isVlan()) return ntohs(eth_type); else // L3 type is now 16 bytes into the hdr with 802.1Q // instead of 12. dnet/eth.h only supports 802.1 return ntohs(*((uint16_t*)(((uint8_t *)this) + 16))); } uint16_t vlanId() const { if (isVlan()) return ntohs(*((uint16_t*)(((uint8_t *)this) + 14))); else return 0x0000; } const EthAddr &src() const { return *(EthAddr *)ð_src; } const EthAddr &dst() const { return *(EthAddr *)ð_dst; } int size() const { if (!isVlan()) return sizeof(eth_hdr); else return (sizeof(eth_hdr)+4); } const uint8_t *bytes() const { return (const uint8_t *)this; } const uint8_t *payload() const { return bytes() + size(); } uint8_t *bytes() { return (uint8_t *)this; } uint8_t *payload() { return bytes() + size(); } }; class EthPtr { protected: friend class IpPtr; friend class Ip6Ptr; EthPacketPtr p; public: EthPtr() {} EthPtr(const EthPacketPtr &ptr) : p(ptr) { } EthHdr *operator->() { return (EthHdr *)p->data; } EthHdr &operator*() { return *(EthHdr *)p->data; } operator EthHdr *() { return (EthHdr *)p->data; } const EthHdr *operator->() const { return (const EthHdr *)p->data; } const EthHdr &operator*() const { return *(const EthHdr *)p->data; } operator const EthHdr *() const { return (const EthHdr *)p->data; } const EthPtr &operator=(const EthPacketPtr &ptr) { p = ptr; return *this; } const EthPacketPtr packet() const { return p; } EthPacketPtr packet() { return p; } bool operator!() const { return !p; } operator bool() const { return (p != nullptr); } int off() const { return 0; } int pstart() const { return off() + ((const EthHdr*)p->data)->size(); } }; /* * IP Stuff */ struct IpAddress { protected: uint32_t _ip; public: IpAddress() : _ip(0) {} IpAddress(const uint32_t __ip) : _ip(__ip) {} uint32_t ip() const { return _ip; } std::string string() const; }; std::ostream &operator<<(std::ostream &stream, const IpAddress &ia); bool operator==(const IpAddress &left, const IpAddress &right); struct IpNetmask : public IpAddress { protected: uint8_t _netmask; public: IpNetmask() : IpAddress(), _netmask(0) {} IpNetmask(const uint32_t __ip, const uint8_t __netmask) : IpAddress(__ip), _netmask(__netmask) {} uint8_t netmask() const { return _netmask; } std::string string() const; }; std::ostream &operator<<(std::ostream &stream, const IpNetmask &in); bool operator==(const IpNetmask &left, const IpNetmask &right); struct IpWithPort : public IpAddress { protected: uint16_t _port; public: IpWithPort() : IpAddress(), _port(0) {} IpWithPort(const uint32_t __ip, const uint16_t __port) : IpAddress(__ip), _port(__port) {} uint8_t port() const { return _port; } std::string string() const; }; std::ostream &operator<<(std::ostream &stream, const IpWithPort &iwp); bool operator==(const IpWithPort &left, const IpWithPort &right); struct IpOpt; struct IpHdr : public ip_hdr { uint8_t version() const { return ip_v; } uint8_t hlen() const { return ip_hl * 4; } uint8_t tos() const { return ip_tos; } uint16_t len() const { return ntohs(ip_len); } uint16_t id() const { return ntohs(ip_id); } uint16_t frag_flags() const { return ntohs(ip_off) >> 13; } uint16_t frag_off() const { return ntohs(ip_off) & 0x1fff; } uint8_t ttl() const { return ip_ttl; } uint8_t proto() const { return ip_p; } uint16_t sum() const { return ip_sum; } uint32_t src() const { return ntohl(ip_src); } uint32_t dst() const { return ntohl(ip_dst); } void sum(uint16_t sum) { ip_sum = sum; } void id(uint16_t _id) { ip_id = htons(_id); } void len(uint16_t _len) { ip_len = htons(_len); } bool options(std::vector &vec) const; int size() const { return hlen(); } const uint8_t *bytes() const { return (const uint8_t *)this; } const uint8_t *payload() const { return bytes() + size(); } uint8_t *bytes() { return (uint8_t *)this; } uint8_t *payload() { return bytes() + size(); } }; class IpPtr { protected: friend class TcpPtr; friend class UdpPtr; EthPacketPtr p; bool eth_hdr_vlan; void set(const EthPacketPtr &ptr) { p = 0; eth_hdr_vlan = false; if (ptr) { EthHdr *eth = (EthHdr *)ptr->data; if (eth->type() == ETH_TYPE_IP) p = ptr; if (eth->isVlan()) eth_hdr_vlan = true; } } public: IpPtr() : p(0), eth_hdr_vlan(false) {} IpPtr(const EthPacketPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr); } IpPtr(const EthPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr.p); } IpPtr(const IpPtr &ptr) : p(ptr.p), eth_hdr_vlan(ptr.eth_hdr_vlan) { } IpHdr *get() { return (IpHdr *)(p->data + sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0)); } IpHdr *operator->() { return get(); } IpHdr &operator*() { return *get(); } const IpHdr *get() const { return (const IpHdr *)(p->data + sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0)); } const IpHdr *operator->() const { return get(); } const IpHdr &operator*() const { return *get(); } const IpPtr &operator=(const EthPacketPtr &ptr) { set(ptr); return *this; } const IpPtr &operator=(const EthPtr &ptr) { set(ptr.p); return *this; } const IpPtr &operator=(const IpPtr &ptr) { p = ptr.p; return *this; } const EthPacketPtr packet() const { return p; } EthPacketPtr packet() { return p; } bool operator!() const { return !p; } operator bool() const { return (p != nullptr); } int off() const { return (sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0)); } int pstart() const { return (off() + get()->size()); } }; uint16_t cksum(const IpPtr &ptr); struct IpOpt : public ip_opt { uint8_t type() const { return opt_type; } uint8_t typeNumber() const { return IP_OPT_NUMBER(opt_type); } uint8_t typeClass() const { return IP_OPT_CLASS(opt_type); } uint8_t typeCopied() const { return IP_OPT_COPIED(opt_type); } uint8_t len() const { return IP_OPT_TYPEONLY(type()) ? 1 : opt_len; } bool isNumber(int num) const { return typeNumber() == IP_OPT_NUMBER(num); } bool isClass(int cls) const { return typeClass() == IP_OPT_CLASS(cls); } bool isCopied(int cpy) const { return typeCopied() == IP_OPT_COPIED(cpy); } const uint8_t *data() const { return opt_data.data8; } void sec(ip_opt_data_sec &sec) const; void lsrr(ip_opt_data_rr &rr) const; void ssrr(ip_opt_data_rr &rr) const; void ts(ip_opt_data_ts &ts) const; uint16_t satid() const { return ntohs(opt_data.satid); } uint16_t mtup() const { return ntohs(opt_data.mtu); } uint16_t mtur() const { return ntohs(opt_data.mtu); } void tr(ip_opt_data_tr &tr) const; const uint32_t *addext() const { return &opt_data.addext[0]; } uint16_t rtralt() const { return ntohs(opt_data.rtralt); } void sdb(std::vector &vec) const; }; /* * Ip6 Classes */ struct Ip6Opt; struct Ip6Hdr : public ip6_hdr { uint8_t version() const { return ip6_vfc; } uint32_t flow() const { return ntohl(ip6_flow); } uint16_t plen() const { return ntohs(ip6_plen); } uint16_t hlen() const { return IP6_HDR_LEN; } uint8_t nxt() const { return ip6_nxt; } uint8_t hlim() const { return ip6_hlim; } const uint8_t* src() const { return ip6_src.data; } const uint8_t* dst() const { return ip6_dst.data; } int extensionLength() const; const Ip6Opt* getExt(uint8_t ext) const; const Ip6Opt* fragmentExt() const { return getExt(IP_PROTO_FRAGMENT); } const Ip6Opt* rtTypeExt() const { return getExt(IP_PROTO_ROUTING); } const Ip6Opt* dstOptExt() const { return getExt(IP_PROTO_DSTOPTS); } uint8_t proto() const; void plen(uint16_t _plen) { ip6_plen = htons(_plen); } int size() const { return IP6_HDR_LEN + extensionLength(); } const uint8_t *bytes() const { return (const uint8_t *)this; } const uint8_t *payload() const { return bytes() + IP6_HDR_LEN + extensionLength(); } uint8_t *bytes() { return (uint8_t *)this; } uint8_t *payload() { return bytes() + IP6_HDR_LEN + extensionLength(); } }; class Ip6Ptr { protected: friend class TcpPtr; friend class UdpPtr; EthPacketPtr p; bool eth_hdr_vlan; void set(const EthPacketPtr &ptr) { p = 0; eth_hdr_vlan = false; if (ptr) { EthHdr *eth = (EthHdr *)ptr->data; if (eth->type() == ETH_TYPE_IPV6) p = ptr; if (eth->isVlan()) eth_hdr_vlan = true; } } public: Ip6Ptr() : p(0), eth_hdr_vlan(false) {} Ip6Ptr(const EthPacketPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr); } Ip6Ptr(const EthPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr.p); } Ip6Ptr(const Ip6Ptr &ptr) : p(ptr.p), eth_hdr_vlan(ptr.eth_hdr_vlan) { } Ip6Hdr *get() { return (Ip6Hdr *)(p->data + sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0)); } Ip6Hdr *operator->() { return get(); } Ip6Hdr &operator*() { return *get(); } const Ip6Hdr *get() const { return (const Ip6Hdr *)(p->data + sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0)); } const Ip6Hdr *operator->() const { return get(); } const Ip6Hdr &operator*() const { return *get(); } const Ip6Ptr &operator=(const EthPacketPtr &ptr) { set(ptr); return *this; } const Ip6Ptr &operator=(const EthPtr &ptr) { set(ptr.p); return *this; } const Ip6Ptr &operator=(const Ip6Ptr &ptr) { p = ptr.p; return *this; } const EthPacketPtr packet() const { return p; } EthPacketPtr packet() { return p; } bool operator!() const { return !p; } operator bool() const { return (p != nullptr); } int off() const { return sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0); } int pstart() const { return off() + get()->size(); } }; // Dnet supplied ipv6 opt header is incomplete and // newer NIC card filters expect a more robust // ipv6 header option declaration. struct ip6_opt_fragment { uint16_t offlg; uint32_t ident; }; struct ip6_opt_routing_type2 { uint8_t type; uint8_t segleft; uint32_t reserved; ip6_addr_t addr; }; #define HOME_ADDRESS_OPTION 0xC9 struct ip6_opt_dstopts { uint8_t type; uint8_t length; ip6_addr_t addr; } __attribute__((packed)); struct ip6_opt_hdr { uint8_t ext_nxt; uint8_t ext_len; union { struct ip6_opt_fragment fragment; struct ip6_opt_routing_type2 rtType2; struct ip6_opt_dstopts dstOpts; } ext_data; } __attribute__((packed)); struct Ip6Opt : public ip6_opt_hdr { uint8_t nxt() const { return ext_nxt; } uint8_t extlen() const { return ext_len; } uint8_t len() const { return extlen() + 8; } // Supporting the types of header extensions likely to be encountered: // fragment, routing type 2 and dstopts. // Routing type 2 uint8_t rtType2Type() const { return ext_data.rtType2.type; } uint8_t rtType2SegLft() const { return ext_data.rtType2.segleft; } const uint8_t* rtType2Addr() const { return ext_data.rtType2.addr.data; } // Fragment uint16_t fragmentOfflg() const { return ntohs(ext_data.fragment.offlg); } uint32_t fragmentIdent() const { return ntohl(ext_data.fragment.ident); } // Dst Options/Home Address Option uint8_t dstOptType() const { return ext_data.dstOpts.type; } uint8_t dstOptLength() const { return ext_data.dstOpts.length; } const uint8_t* dstOptAddr() const { return ext_data.dstOpts.addr.data; } }; /* * TCP Stuff */ struct TcpOpt; struct TcpHdr : public tcp_hdr { uint16_t sport() const { return ntohs(th_sport); } uint16_t dport() const { return ntohs(th_dport); } uint32_t seq() const { return ntohl(th_seq); } uint32_t ack() const { return ntohl(th_ack); } uint8_t off() const { return th_off*4; } uint8_t flags() const { return th_flags & 0x3f; } uint16_t win() const { return ntohs(th_win); } uint16_t sum() const { return th_sum; } uint16_t urp() const { return ntohs(th_urp); } void sum(uint16_t sum) { th_sum = sum; } void seq(uint32_t _seq) { th_seq = htonl(_seq); } void flags(uint8_t _flags) { th_flags = _flags; } bool options(std::vector &vec) const; int size() const { return off(); } const uint8_t *bytes() const { return (const uint8_t *)this; } const uint8_t *payload() const { return bytes() + size(); } uint8_t *bytes() { return (uint8_t *)this; } uint8_t *payload() { return bytes() + size(); } }; class TcpPtr { protected: EthPacketPtr p; int _off; void set(const EthPacketPtr &ptr, int offset) { p = ptr; _off = offset; } void set(const IpPtr &ptr) { if (ptr && ptr->proto() == IP_PROTO_TCP) set(ptr.p, ptr.pstart()); else set(0, 0); } void set(const Ip6Ptr &ptr) { if (ptr && ptr->proto() == IP_PROTO_TCP) set(ptr.p, ptr.pstart()); else set(0, 0); } public: TcpPtr() : p(0), _off(0) {} TcpPtr(const IpPtr &ptr) : p(0), _off(0) { set(ptr); } TcpPtr(const Ip6Ptr &ptr) : p(0), _off(0) { set(ptr); } TcpPtr(const TcpPtr &ptr) : p(ptr.p), _off(ptr._off) {} TcpHdr *get() { return (TcpHdr *)(p->data + _off); } TcpHdr *operator->() { return get(); } TcpHdr &operator*() { return *get(); } const TcpHdr *get() const { return (const TcpHdr *)(p->data + _off); } const TcpHdr *operator->() const { return get(); } const TcpHdr &operator*() const { return *get(); } const TcpPtr &operator=(const IpPtr &i) { set(i); return *this; } const TcpPtr &operator=(const TcpPtr &t) { set(t.p, t._off); return *this; } const EthPacketPtr packet() const { return p; } EthPacketPtr packet() { return p; } bool operator!() const { return !p; } operator bool() const { return (p != nullptr); } int off() const { return _off; } int pstart() const { return off() + get()->size(); } }; uint16_t cksum(const TcpPtr &ptr); struct TcpOpt : public tcp_opt { uint8_t type() const { return opt_type; } uint8_t len() const { return TCP_OPT_TYPEONLY(type()) ? 1 : opt_len; } bool isopt(int opt) const { return type() == opt; } const uint8_t *data() const { return opt_data.data8; } uint16_t mss() const { return ntohs(opt_data.mss); } uint8_t wscale() const { return opt_data.wscale; } uint32_t echo() const { return ntohl(opt_data.echo); } uint32_t tsval() const { return ntohl(opt_data.timestamp[0]); } uint32_t tsecr() const { return ntohl(opt_data.timestamp[1]); } uint32_t cc() const { return ntohl(opt_data.cc); } uint8_t cksum() const{ return opt_data.cksum; } const uint8_t *md5() const { return opt_data.md5; } int size() const { return len(); } const uint8_t *bytes() const { return (const uint8_t *)this; } const uint8_t *payload() const { return bytes() + size(); } uint8_t *bytes() { return (uint8_t *)this; } uint8_t *payload() { return bytes() + size(); } }; /* * UDP Stuff */ struct UdpHdr : public udp_hdr { uint16_t sport() const { return ntohs(uh_sport); } uint16_t dport() const { return ntohs(uh_dport); } uint16_t len() const { return ntohs(uh_ulen); } uint16_t sum() const { return uh_sum; } void sum(uint16_t sum) { uh_sum = sum; } void len(uint16_t _len) { uh_ulen = htons(_len); } int size() const { return sizeof(udp_hdr); } const uint8_t *bytes() const { return (const uint8_t *)this; } const uint8_t *payload() const { return bytes() + size(); } uint8_t *bytes() { return (uint8_t *)this; } uint8_t *payload() { return bytes() + size(); } }; class UdpPtr { protected: EthPacketPtr p; int _off; void set(const EthPacketPtr &ptr, int offset) { p = ptr; _off = offset; } void set(const IpPtr &ptr) { if (ptr && ptr->proto() == IP_PROTO_UDP) set(ptr.p, ptr.pstart()); else set(0, 0); } void set(const Ip6Ptr &ptr) { if (ptr && ptr->proto() == IP_PROTO_UDP) set(ptr.p, ptr.pstart()); else set(0, 0); } public: UdpPtr() : p(0), _off(0) {} UdpPtr(const IpPtr &ptr) : p(0), _off(0) { set(ptr); } UdpPtr(const Ip6Ptr &ptr) : p(0), _off(0) { set(ptr); } UdpPtr(const UdpPtr &ptr) : p(ptr.p), _off(ptr._off) {} UdpHdr *get() { return (UdpHdr *)(p->data + _off); } UdpHdr *operator->() { return get(); } UdpHdr &operator*() { return *get(); } const UdpHdr *get() const { return (const UdpHdr *)(p->data + _off); } const UdpHdr *operator->() const { return get(); } const UdpHdr &operator*() const { return *get(); } const UdpPtr &operator=(const IpPtr &i) { set(i); return *this; } const UdpPtr &operator=(const UdpPtr &t) { set(t.p, t._off); return *this; } const EthPacketPtr packet() const { return p; } EthPacketPtr packet() { return p; } bool operator!() const { return !p; } operator bool() const { return (p != nullptr); } int off() const { return _off; } int pstart() const { return off() + get()->size(); } }; uint16_t __tu_cksum6(const Ip6Ptr &ip6); uint16_t __tu_cksum(const IpPtr &ip); uint16_t cksum(const UdpPtr &ptr); int hsplit(const EthPacketPtr &ptr); } // namespace Net #endif // __BASE_INET_HH__