/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Nathan Binkert */ #include #include #include #include "base/cprintf.hh" #include "base/loader/symtab.hh" #include "base/misc.hh" #include "base/output.hh" #include "cpu/base.hh" #include "cpu/cpuevent.hh" #include "cpu/thread_context.hh" #include "cpu/profile.hh" #include "sim/sim_exit.hh" #include "sim/param.hh" #include "sim/process.hh" #include "sim/sim_events.hh" #include "sim/system.hh" #include "base/trace.hh" // Hack #include "sim/stat_control.hh" using namespace std; vector BaseCPU::cpuList; // This variable reflects the max number of threads in any CPU. Be // careful to only use it once all the CPUs that you care about have // been initialized int maxThreadsPerCPU = 1; CPUProgressEvent::CPUProgressEvent(EventQueue *q, Tick ival, BaseCPU *_cpu) : Event(q, Event::Stat_Event_Pri), interval(ival), lastNumInst(0), cpu(_cpu) { if (interval) schedule(curTick + interval); } void CPUProgressEvent::process() { Counter temp = cpu->totalInstructions(); #ifndef NDEBUG double ipc = double(temp - lastNumInst) / (interval / cpu->cycles(1)); DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n", cpu->name(), temp - lastNumInst, ipc); ipc = 0.0; #else cprintf("%lli: %s progress event, instructions committed: %lli\n", curTick, cpu->name(), temp - lastNumInst); #endif lastNumInst = temp; schedule(curTick + interval); } const char * CPUProgressEvent::description() { return "CPU Progress event"; } #if FULL_SYSTEM BaseCPU::BaseCPU(Params *p) : MemObject(p->name), clock(p->clock), instCnt(0), checkInterrupts(true), params(p), number_of_threads(p->numberOfThreads), system(p->system), phase(p->phase) #else BaseCPU::BaseCPU(Params *p) : MemObject(p->name), clock(p->clock), params(p), number_of_threads(p->numberOfThreads), system(p->system), phase(p->phase) #endif { // currentTick = curTick; DPRINTF(FullCPU, "BaseCPU: Creating object, mem address %#x.\n", this); // add self to global list of CPUs cpuList.push_back(this); DPRINTF(FullCPU, "BaseCPU: CPU added to cpuList, mem address %#x.\n", this); if (number_of_threads > maxThreadsPerCPU) maxThreadsPerCPU = number_of_threads; // allocate per-thread instruction-based event queues comInstEventQueue = new EventQueue *[number_of_threads]; for (int i = 0; i < number_of_threads; ++i) comInstEventQueue[i] = new EventQueue("instruction-based event queue"); // // set up instruction-count-based termination events, if any // if (p->max_insts_any_thread != 0) for (int i = 0; i < number_of_threads; ++i) schedExitSimLoop("a thread reached the max instruction count", p->max_insts_any_thread, 0, comInstEventQueue[i]); if (p->max_insts_all_threads != 0) { // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = number_of_threads; for (int i = 0; i < number_of_threads; ++i) new CountedExitEvent(comInstEventQueue[i], "all threads reached the max instruction count", p->max_insts_all_threads, *counter); } // allocate per-thread load-based event queues comLoadEventQueue = new EventQueue *[number_of_threads]; for (int i = 0; i < number_of_threads; ++i) comLoadEventQueue[i] = new EventQueue("load-based event queue"); // // set up instruction-count-based termination events, if any // if (p->max_loads_any_thread != 0) for (int i = 0; i < number_of_threads; ++i) schedExitSimLoop("a thread reached the max load count", p->max_loads_any_thread, 0, comLoadEventQueue[i]); if (p->max_loads_all_threads != 0) { // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = number_of_threads; for (int i = 0; i < number_of_threads; ++i) new CountedExitEvent(comLoadEventQueue[i], "all threads reached the max load count", p->max_loads_all_threads, *counter); } functionTracingEnabled = false; if (p->functionTrace) { functionTraceStream = simout.find(csprintf("ftrace.%s", name())); currentFunctionStart = currentFunctionEnd = 0; functionEntryTick = p->functionTraceStart; if (p->functionTraceStart == 0) { functionTracingEnabled = true; } else { Event *e = new EventWrapper(this, true); e->schedule(p->functionTraceStart); } } #if FULL_SYSTEM profileEvent = NULL; if (params->profile) profileEvent = new ProfileEvent(this, params->profile); #endif } BaseCPU::Params::Params() { #if FULL_SYSTEM profile = false; #endif checker = NULL; } void BaseCPU::enableFunctionTrace() { functionTracingEnabled = true; } BaseCPU::~BaseCPU() { } void BaseCPU::init() { if (!params->deferRegistration) registerThreadContexts(); } void BaseCPU::startup() { #if FULL_SYSTEM if (!params->deferRegistration && profileEvent) profileEvent->schedule(curTick); #endif if (params->progress_interval) { new CPUProgressEvent(&mainEventQueue, params->progress_interval, this); } } void BaseCPU::regStats() { using namespace Stats; numCycles .name(name() + ".numCycles") .desc("number of cpu cycles simulated") ; int size = threadContexts.size(); if (size > 1) { for (int i = 0; i < size; ++i) { stringstream namestr; ccprintf(namestr, "%s.ctx%d", name(), i); threadContexts[i]->regStats(namestr.str()); } } else if (size == 1) threadContexts[0]->regStats(name()); #if FULL_SYSTEM #endif } Tick BaseCPU::nextCycle() { Tick next_tick = curTick - phase + clock - 1; next_tick -= (next_tick % clock); next_tick += phase; return next_tick; } Tick BaseCPU::nextCycle(Tick begin_tick) { Tick next_tick = begin_tick; next_tick -= (next_tick % clock); next_tick += phase; while (next_tick < curTick) next_tick += clock; assert(next_tick >= curTick); return next_tick; } void BaseCPU::registerThreadContexts() { for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *tc = threadContexts[i]; #if FULL_SYSTEM int id = params->cpu_id; if (id != -1) id += i; tc->setCpuId(system->registerThreadContext(tc, id)); #else tc->setCpuId(tc->getProcessPtr()->registerThreadContext(tc)); #endif } } void BaseCPU::switchOut() { // panic("This CPU doesn't support sampling!"); #if FULL_SYSTEM if (profileEvent && profileEvent->scheduled()) profileEvent->deschedule(); #endif } void BaseCPU::takeOverFrom(BaseCPU *oldCPU) { assert(threadContexts.size() == oldCPU->threadContexts.size()); for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *newTC = threadContexts[i]; ThreadContext *oldTC = oldCPU->threadContexts[i]; newTC->takeOverFrom(oldTC); CpuEvent::replaceThreadContext(oldTC, newTC); assert(newTC->readCpuId() == oldTC->readCpuId()); #if FULL_SYSTEM system->replaceThreadContext(newTC, newTC->readCpuId()); #else assert(newTC->getProcessPtr() == oldTC->getProcessPtr()); newTC->getProcessPtr()->replaceThreadContext(newTC, newTC->readCpuId()); #endif // TheISA::compareXCs(oldXC, newXC); } #if FULL_SYSTEM interrupts = oldCPU->interrupts; checkInterrupts = oldCPU->checkInterrupts; for (int i = 0; i < threadContexts.size(); ++i) threadContexts[i]->profileClear(); // The Sampler must take care of this! // if (profileEvent) // profileEvent->schedule(curTick); #endif } #if FULL_SYSTEM BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval) : Event(&mainEventQueue), cpu(_cpu), interval(_interval) { } void BaseCPU::ProfileEvent::process() { for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) { ThreadContext *tc = cpu->threadContexts[i]; tc->profileSample(); } schedule(curTick + interval); } void BaseCPU::post_interrupt(int int_num, int index) { checkInterrupts = true; interrupts.post(int_num, index); } void BaseCPU::clear_interrupt(int int_num, int index) { interrupts.clear(int_num, index); } void BaseCPU::clear_interrupts() { interrupts.clear_all(); } void BaseCPU::serialize(std::ostream &os) { interrupts.serialize(os); } void BaseCPU::unserialize(Checkpoint *cp, const std::string §ion) { interrupts.unserialize(cp, section); } #endif // FULL_SYSTEM void BaseCPU::traceFunctionsInternal(Addr pc) { if (!debugSymbolTable) return; // if pc enters different function, print new function symbol and // update saved range. Otherwise do nothing. if (pc < currentFunctionStart || pc >= currentFunctionEnd) { string sym_str; bool found = debugSymbolTable->findNearestSymbol(pc, sym_str, currentFunctionStart, currentFunctionEnd); if (!found) { // no symbol found: use addr as label sym_str = csprintf("0x%x", pc); currentFunctionStart = pc; currentFunctionEnd = pc + 1; } ccprintf(*functionTraceStream, " (%d)\n%d: %s", curTick - functionEntryTick, curTick, sym_str); functionEntryTick = curTick; } } DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)