/* * Copyright (c) 2011-2012,2016-2017 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2002-2005 The Regents of The University of Michigan * Copyright (c) 2011 Regents of the University of California * Copyright (c) 2013 Advanced Micro Devices, Inc. * Copyright (c) 2013 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Nathan Binkert * Rick Strong */ #include "cpu/base.hh" #include #include #include #include "arch/generic/tlb.hh" #include "base/cprintf.hh" #include "base/loader/symtab.hh" #include "base/logging.hh" #include "base/output.hh" #include "base/trace.hh" #include "cpu/checker/cpu.hh" #include "cpu/cpuevent.hh" #include "cpu/profile.hh" #include "cpu/thread_context.hh" #include "debug/Mwait.hh" #include "debug/SyscallVerbose.hh" #include "mem/page_table.hh" #include "params/BaseCPU.hh" #include "sim/clocked_object.hh" #include "sim/full_system.hh" #include "sim/process.hh" #include "sim/sim_events.hh" #include "sim/sim_exit.hh" #include "sim/system.hh" // Hack #include "sim/stat_control.hh" using namespace std; vector BaseCPU::cpuList; // This variable reflects the max number of threads in any CPU. Be // careful to only use it once all the CPUs that you care about have // been initialized int maxThreadsPerCPU = 1; CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival) : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0), cpu(_cpu), _repeatEvent(true) { if (_interval) cpu->schedule(this, curTick() + _interval); } void CPUProgressEvent::process() { Counter temp = cpu->totalOps(); if (_repeatEvent) cpu->schedule(this, curTick() + _interval); if (cpu->switchedOut()) { return; } #ifndef NDEBUG double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod()); DPRINTFN("%s progress event, total committed:%i, progress insts committed: " "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst, ipc); ipc = 0.0; #else cprintf("%lli: %s progress event, total committed:%i, progress insts " "committed: %lli\n", curTick(), cpu->name(), temp, temp - lastNumInst); #endif lastNumInst = temp; } const char * CPUProgressEvent::description() const { return "CPU Progress"; } BaseCPU::BaseCPU(Params *p, bool is_checker) : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id), _instMasterId(p->system->getMasterId(this, "inst")), _dataMasterId(p->system->getMasterId(this, "data")), _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid), _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()), interrupts(p->interrupts), profileEvent(NULL), numThreads(p->numThreads), system(p->system), previousCycle(0), previousState(CPU_STATE_SLEEP), functionTraceStream(nullptr), currentFunctionStart(0), currentFunctionEnd(0), functionEntryTick(0), addressMonitor(p->numThreads), syscallRetryLatency(p->syscallRetryLatency), pwrGatingLatency(p->pwr_gating_latency), powerGatingOnIdle(p->power_gating_on_idle), enterPwrGatingEvent([this]{ enterPwrGating(); }, name()) { // if Python did not provide a valid ID, do it here if (_cpuId == -1 ) { _cpuId = cpuList.size(); } // add self to global list of CPUs cpuList.push_back(this); DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n", _cpuId, _socketId); if (numThreads > maxThreadsPerCPU) maxThreadsPerCPU = numThreads; // allocate per-thread instruction-based event queues comInstEventQueue = new EventQueue *[numThreads]; for (ThreadID tid = 0; tid < numThreads; ++tid) comInstEventQueue[tid] = new EventQueue("instruction-based event queue"); // // set up instruction-count-based termination events, if any // if (p->max_insts_any_thread != 0) { const char *cause = "a thread reached the max instruction count"; for (ThreadID tid = 0; tid < numThreads; ++tid) scheduleInstStop(tid, p->max_insts_any_thread, cause); } // Set up instruction-count-based termination events for SimPoints // Typically, there are more than one action points. // Simulation.py is responsible to take the necessary actions upon // exitting the simulation loop. if (!p->simpoint_start_insts.empty()) { const char *cause = "simpoint starting point found"; for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i) scheduleInstStop(0, p->simpoint_start_insts[i], cause); } if (p->max_insts_all_threads != 0) { const char *cause = "all threads reached the max instruction count"; // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = numThreads; for (ThreadID tid = 0; tid < numThreads; ++tid) { Event *event = new CountedExitEvent(cause, *counter); comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads); } } // allocate per-thread load-based event queues comLoadEventQueue = new EventQueue *[numThreads]; for (ThreadID tid = 0; tid < numThreads; ++tid) comLoadEventQueue[tid] = new EventQueue("load-based event queue"); // // set up instruction-count-based termination events, if any // if (p->max_loads_any_thread != 0) { const char *cause = "a thread reached the max load count"; for (ThreadID tid = 0; tid < numThreads; ++tid) scheduleLoadStop(tid, p->max_loads_any_thread, cause); } if (p->max_loads_all_threads != 0) { const char *cause = "all threads reached the max load count"; // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = numThreads; for (ThreadID tid = 0; tid < numThreads; ++tid) { Event *event = new CountedExitEvent(cause, *counter); comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads); } } functionTracingEnabled = false; if (p->function_trace) { const string fname = csprintf("ftrace.%s", name()); functionTraceStream = simout.findOrCreate(fname)->stream(); currentFunctionStart = currentFunctionEnd = 0; functionEntryTick = p->function_trace_start; if (p->function_trace_start == 0) { functionTracingEnabled = true; } else { Event *event = new EventFunctionWrapper( [this]{ enableFunctionTrace(); }, name(), true); schedule(event, p->function_trace_start); } } // The interrupts should always be present unless this CPU is // switched in later or in case it is a checker CPU if (!params()->switched_out && !is_checker) { fatal_if(interrupts.size() != numThreads, "CPU %s has %i interrupt controllers, but is expecting one " "per thread (%i)\n", name(), interrupts.size(), numThreads); for (ThreadID tid = 0; tid < numThreads; tid++) interrupts[tid]->setCPU(this); } if (FullSystem) { if (params()->profile) profileEvent = new EventFunctionWrapper( [this]{ processProfileEvent(); }, name()); } tracer = params()->tracer; if (params()->isa.size() != numThreads) { fatal("Number of ISAs (%i) assigned to the CPU does not equal number " "of threads (%i).\n", params()->isa.size(), numThreads); } } void BaseCPU::enableFunctionTrace() { functionTracingEnabled = true; } BaseCPU::~BaseCPU() { delete profileEvent; delete[] comLoadEventQueue; delete[] comInstEventQueue; } void BaseCPU::armMonitor(ThreadID tid, Addr address) { assert(tid < numThreads); AddressMonitor &monitor = addressMonitor[tid]; monitor.armed = true; monitor.vAddr = address; monitor.pAddr = 0x0; DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address); } bool BaseCPU::mwait(ThreadID tid, PacketPtr pkt) { assert(tid < numThreads); AddressMonitor &monitor = addressMonitor[tid]; if (!monitor.gotWakeup) { int block_size = cacheLineSize(); uint64_t mask = ~((uint64_t)(block_size - 1)); assert(pkt->req->hasPaddr()); monitor.pAddr = pkt->getAddr() & mask; monitor.waiting = true; DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, " "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr); return true; } else { monitor.gotWakeup = false; return false; } } void BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, BaseTLB *dtb) { assert(tid < numThreads); AddressMonitor &monitor = addressMonitor[tid]; RequestPtr req = std::make_shared(); Addr addr = monitor.vAddr; int block_size = cacheLineSize(); uint64_t mask = ~((uint64_t)(block_size - 1)); int size = block_size; //The address of the next line if it crosses a cache line boundary. Addr secondAddr = roundDown(addr + size - 1, block_size); if (secondAddr > addr) size = secondAddr - addr; req->setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr()); // translate to physical address Fault fault = dtb->translateAtomic(req, tc, BaseTLB::Read); assert(fault == NoFault); monitor.pAddr = req->getPaddr() & mask; monitor.waiting = true; DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr); } void BaseCPU::init() { if (!params()->switched_out) { registerThreadContexts(); verifyMemoryMode(); } } void BaseCPU::startup() { if (FullSystem) { if (!params()->switched_out && profileEvent) schedule(profileEvent, curTick()); } if (params()->progress_interval) { new CPUProgressEvent(this, params()->progress_interval); } if (_switchedOut) ClockedObject::pwrState(Enums::PwrState::OFF); // Assumption CPU start to operate instantaneously without any latency if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED) ClockedObject::pwrState(Enums::PwrState::ON); } ProbePoints::PMUUPtr BaseCPU::pmuProbePoint(const char *name) { ProbePoints::PMUUPtr ptr; ptr.reset(new ProbePoints::PMU(getProbeManager(), name)); return ptr; } void BaseCPU::regProbePoints() { ppAllCycles = pmuProbePoint("Cycles"); ppActiveCycles = pmuProbePoint("ActiveCycles"); ppRetiredInsts = pmuProbePoint("RetiredInsts"); ppRetiredLoads = pmuProbePoint("RetiredLoads"); ppRetiredStores = pmuProbePoint("RetiredStores"); ppRetiredBranches = pmuProbePoint("RetiredBranches"); ppSleeping = new ProbePointArg(this->getProbeManager(), "Sleeping"); } void BaseCPU::probeInstCommit(const StaticInstPtr &inst) { if (!inst->isMicroop() || inst->isLastMicroop()) ppRetiredInsts->notify(1); if (inst->isLoad()) ppRetiredLoads->notify(1); if (inst->isStore()) ppRetiredStores->notify(1); if (inst->isControl()) ppRetiredBranches->notify(1); } void BaseCPU::regStats() { MemObject::regStats(); using namespace Stats; numCycles .name(name() + ".numCycles") .desc("number of cpu cycles simulated") ; numWorkItemsStarted .name(name() + ".numWorkItemsStarted") .desc("number of work items this cpu started") ; numWorkItemsCompleted .name(name() + ".numWorkItemsCompleted") .desc("number of work items this cpu completed") ; int size = threadContexts.size(); if (size > 1) { for (int i = 0; i < size; ++i) { stringstream namestr; ccprintf(namestr, "%s.ctx%d", name(), i); threadContexts[i]->regStats(namestr.str()); } } else if (size == 1) threadContexts[0]->regStats(name()); } BaseMasterPort & BaseCPU::getMasterPort(const string &if_name, PortID idx) { // Get the right port based on name. This applies to all the // subclasses of the base CPU and relies on their implementation // of getDataPort and getInstPort. In all cases there methods // return a MasterPort pointer. if (if_name == "dcache_port") return getDataPort(); else if (if_name == "icache_port") return getInstPort(); else return MemObject::getMasterPort(if_name, idx); } void BaseCPU::registerThreadContexts() { assert(system->multiThread || numThreads == 1); ThreadID size = threadContexts.size(); for (ThreadID tid = 0; tid < size; ++tid) { ThreadContext *tc = threadContexts[tid]; if (system->multiThread) { tc->setContextId(system->registerThreadContext(tc)); } else { tc->setContextId(system->registerThreadContext(tc, _cpuId)); } if (!FullSystem) tc->getProcessPtr()->assignThreadContext(tc->contextId()); } } void BaseCPU::deschedulePowerGatingEvent() { if (enterPwrGatingEvent.scheduled()){ deschedule(enterPwrGatingEvent); } } void BaseCPU::schedulePowerGatingEvent() { for (auto tc : threadContexts) { if (tc->status() == ThreadContext::Active) return; } if (ClockedObject::pwrState() == Enums::PwrState::CLK_GATED && powerGatingOnIdle) { assert(!enterPwrGatingEvent.scheduled()); // Schedule a power gating event when clock gated for the specified // amount of time schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency)); } } int BaseCPU::findContext(ThreadContext *tc) { ThreadID size = threadContexts.size(); for (ThreadID tid = 0; tid < size; ++tid) { if (tc == threadContexts[tid]) return tid; } return 0; } void BaseCPU::activateContext(ThreadID thread_num) { // Squash enter power gating event while cpu gets activated if (enterPwrGatingEvent.scheduled()) deschedule(enterPwrGatingEvent); // For any active thread running, update CPU power state to active (ON) ClockedObject::pwrState(Enums::PwrState::ON); updateCycleCounters(CPU_STATE_WAKEUP); } void BaseCPU::suspendContext(ThreadID thread_num) { // Check if all threads are suspended for (auto t : threadContexts) { if (t->status() != ThreadContext::Suspended) { return; } } // All CPU thread are suspended, update cycle count updateCycleCounters(CPU_STATE_SLEEP); // All CPU threads suspended, enter lower power state for the CPU ClockedObject::pwrState(Enums::PwrState::CLK_GATED); // If pwrGatingLatency is set to 0 then this mechanism is disabled if (powerGatingOnIdle) { // Schedule power gating event when clock gated for pwrGatingLatency // cycles schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency)); } } void BaseCPU::haltContext(ThreadID thread_num) { updateCycleCounters(BaseCPU::CPU_STATE_SLEEP); } void BaseCPU::enterPwrGating(void) { ClockedObject::pwrState(Enums::PwrState::OFF); } void BaseCPU::switchOut() { assert(!_switchedOut); _switchedOut = true; if (profileEvent && profileEvent->scheduled()) deschedule(profileEvent); // Flush all TLBs in the CPU to avoid having stale translations if // it gets switched in later. flushTLBs(); // Go to the power gating state ClockedObject::pwrState(Enums::PwrState::OFF); } void BaseCPU::takeOverFrom(BaseCPU *oldCPU) { assert(threadContexts.size() == oldCPU->threadContexts.size()); assert(_cpuId == oldCPU->cpuId()); assert(_switchedOut); assert(oldCPU != this); _pid = oldCPU->getPid(); _taskId = oldCPU->taskId(); // Take over the power state of the switchedOut CPU ClockedObject::pwrState(oldCPU->pwrState()); previousState = oldCPU->previousState; previousCycle = oldCPU->previousCycle; _switchedOut = false; ThreadID size = threadContexts.size(); for (ThreadID i = 0; i < size; ++i) { ThreadContext *newTC = threadContexts[i]; ThreadContext *oldTC = oldCPU->threadContexts[i]; newTC->takeOverFrom(oldTC); CpuEvent::replaceThreadContext(oldTC, newTC); assert(newTC->contextId() == oldTC->contextId()); assert(newTC->threadId() == oldTC->threadId()); system->replaceThreadContext(newTC, newTC->contextId()); /* This code no longer works since the zero register (e.g., * r31 on Alpha) doesn't necessarily contain zero at this * point. if (DTRACE(Context)) ThreadContext::compare(oldTC, newTC); */ BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort(); BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort(); BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort(); BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort(); // Move over any table walker ports if they exist if (new_itb_port) { assert(!new_itb_port->isConnected()); assert(old_itb_port); assert(old_itb_port->isConnected()); BaseSlavePort &slavePort = old_itb_port->getSlavePort(); old_itb_port->unbind(); new_itb_port->bind(slavePort); } if (new_dtb_port) { assert(!new_dtb_port->isConnected()); assert(old_dtb_port); assert(old_dtb_port->isConnected()); BaseSlavePort &slavePort = old_dtb_port->getSlavePort(); old_dtb_port->unbind(); new_dtb_port->bind(slavePort); } newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr()); newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr()); // Checker whether or not we have to transfer CheckerCPU // objects over in the switch CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr(); CheckerCPU *newChecker = newTC->getCheckerCpuPtr(); if (oldChecker && newChecker) { BaseMasterPort *old_checker_itb_port = oldChecker->getITBPtr()->getMasterPort(); BaseMasterPort *old_checker_dtb_port = oldChecker->getDTBPtr()->getMasterPort(); BaseMasterPort *new_checker_itb_port = newChecker->getITBPtr()->getMasterPort(); BaseMasterPort *new_checker_dtb_port = newChecker->getDTBPtr()->getMasterPort(); newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr()); newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr()); // Move over any table walker ports if they exist for checker if (new_checker_itb_port) { assert(!new_checker_itb_port->isConnected()); assert(old_checker_itb_port); assert(old_checker_itb_port->isConnected()); BaseSlavePort &slavePort = old_checker_itb_port->getSlavePort(); old_checker_itb_port->unbind(); new_checker_itb_port->bind(slavePort); } if (new_checker_dtb_port) { assert(!new_checker_dtb_port->isConnected()); assert(old_checker_dtb_port); assert(old_checker_dtb_port->isConnected()); BaseSlavePort &slavePort = old_checker_dtb_port->getSlavePort(); old_checker_dtb_port->unbind(); new_checker_dtb_port->bind(slavePort); } } } interrupts = oldCPU->interrupts; for (ThreadID tid = 0; tid < numThreads; tid++) { interrupts[tid]->setCPU(this); } oldCPU->interrupts.clear(); if (FullSystem) { for (ThreadID i = 0; i < size; ++i) threadContexts[i]->profileClear(); if (profileEvent) schedule(profileEvent, curTick()); } // All CPUs have an instruction and a data port, and the new CPU's // ports are dangling while the old CPU has its ports connected // already. Unbind the old CPU and then bind the ports of the one // we are switching to. assert(!getInstPort().isConnected()); assert(oldCPU->getInstPort().isConnected()); BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort(); oldCPU->getInstPort().unbind(); getInstPort().bind(inst_peer_port); assert(!getDataPort().isConnected()); assert(oldCPU->getDataPort().isConnected()); BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort(); oldCPU->getDataPort().unbind(); getDataPort().bind(data_peer_port); } void BaseCPU::flushTLBs() { for (ThreadID i = 0; i < threadContexts.size(); ++i) { ThreadContext &tc(*threadContexts[i]); CheckerCPU *checker(tc.getCheckerCpuPtr()); tc.getITBPtr()->flushAll(); tc.getDTBPtr()->flushAll(); if (checker) { checker->getITBPtr()->flushAll(); checker->getDTBPtr()->flushAll(); } } } void BaseCPU::processProfileEvent() { ThreadID size = threadContexts.size(); for (ThreadID i = 0; i < size; ++i) threadContexts[i]->profileSample(); schedule(profileEvent, curTick() + params()->profile); } void BaseCPU::serialize(CheckpointOut &cp) const { SERIALIZE_SCALAR(instCnt); if (!_switchedOut) { /* Unlike _pid, _taskId is not serialized, as they are dynamically * assigned unique ids that are only meaningful for the duration of * a specific run. We will need to serialize the entire taskMap in * system. */ SERIALIZE_SCALAR(_pid); // Serialize the threads, this is done by the CPU implementation. for (ThreadID i = 0; i < numThreads; ++i) { ScopedCheckpointSection sec(cp, csprintf("xc.%i", i)); interrupts[i]->serialize(cp); serializeThread(cp, i); } } } void BaseCPU::unserialize(CheckpointIn &cp) { UNSERIALIZE_SCALAR(instCnt); if (!_switchedOut) { UNSERIALIZE_SCALAR(_pid); // Unserialize the threads, this is done by the CPU implementation. for (ThreadID i = 0; i < numThreads; ++i) { ScopedCheckpointSection sec(cp, csprintf("xc.%i", i)); interrupts[i]->unserialize(cp); unserializeThread(cp, i); } } } void BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause) { const Tick now(comInstEventQueue[tid]->getCurTick()); Event *event(new LocalSimLoopExitEvent(cause, 0)); comInstEventQueue[tid]->schedule(event, now + insts); } uint64_t BaseCPU::getCurrentInstCount(ThreadID tid) { return Tick(comInstEventQueue[tid]->getCurTick()); } AddressMonitor::AddressMonitor() { armed = false; waiting = false; gotWakeup = false; } bool AddressMonitor::doMonitor(PacketPtr pkt) { assert(pkt->req->hasPaddr()); if (armed && waiting) { if (pAddr == pkt->getAddr()) { DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n", pkt->getAddr()); waiting = false; return true; } } return false; } void BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause) { const Tick now(comLoadEventQueue[tid]->getCurTick()); Event *event(new LocalSimLoopExitEvent(cause, 0)); comLoadEventQueue[tid]->schedule(event, now + loads); } void BaseCPU::traceFunctionsInternal(Addr pc) { if (!debugSymbolTable) return; // if pc enters different function, print new function symbol and // update saved range. Otherwise do nothing. if (pc < currentFunctionStart || pc >= currentFunctionEnd) { string sym_str; bool found = debugSymbolTable->findNearestSymbol(pc, sym_str, currentFunctionStart, currentFunctionEnd); if (!found) { // no symbol found: use addr as label sym_str = csprintf("0x%x", pc); currentFunctionStart = pc; currentFunctionEnd = pc + 1; } ccprintf(*functionTraceStream, " (%d)\n%d: %s", curTick() - functionEntryTick, curTick(), sym_str); functionEntryTick = curTick(); } } bool BaseCPU::waitForRemoteGDB() const { return params()->wait_for_remote_gdb; }