/*
 * Copyright (c) 2011, 2013, 2016-2019 ARM Limited
 * Copyright (c) 2013 Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2004-2006 The Regents of The University of Michigan
 * Copyright (c) 2009 The University of Edinburgh
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 *          Timothy M. Jones
 */

#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__

#include <array>
#include <bitset>
#include <deque>
#include <list>
#include <string>

#include "arch/generic/tlb.hh"
#include "arch/utility.hh"
#include "base/trace.hh"
#include "config/the_isa.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_res.hh"
#include "cpu/inst_seq.hh"
#include "cpu/op_class.hh"
#include "cpu/static_inst.hh"
#include "cpu/translation.hh"
#include "mem/packet.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/system.hh"

/**
 * @file
 * Defines a dynamic instruction context.
 */

template <class Impl>
class BaseDynInst : public ExecContext, public RefCounted
{
  public:
    // Typedef for the CPU.
    typedef typename Impl::CPUType ImplCPU;
    typedef typename ImplCPU::ImplState ImplState;
    using VecRegContainer = TheISA::VecRegContainer;

    using LSQRequestPtr = typename Impl::CPUPol::LSQ::LSQRequest*;
    using LQIterator = typename Impl::CPUPol::LSQUnit::LQIterator;
    using SQIterator = typename Impl::CPUPol::LSQUnit::SQIterator;

    // The DynInstPtr type.
    typedef typename Impl::DynInstPtr DynInstPtr;
    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;

    // The list of instructions iterator type.
    typedef typename std::list<DynInstPtr>::iterator ListIt;

    enum {
        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
    };

  protected:
    enum Status {
        IqEntry,                 /// Instruction is in the IQ
        RobEntry,                /// Instruction is in the ROB
        LsqEntry,                /// Instruction is in the LSQ
        Completed,               /// Instruction has completed
        ResultReady,             /// Instruction has its result
        CanIssue,                /// Instruction can issue and execute
        Issued,                  /// Instruction has issued
        Executed,                /// Instruction has executed
        CanCommit,               /// Instruction can commit
        AtCommit,                /// Instruction has reached commit
        Committed,               /// Instruction has committed
        Squashed,                /// Instruction is squashed
        SquashedInIQ,            /// Instruction is squashed in the IQ
        SquashedInLSQ,           /// Instruction is squashed in the LSQ
        SquashedInROB,           /// Instruction is squashed in the ROB
        PinnedRegsRenamed,       /// Pinned registers are renamed
        PinnedRegsWritten,       /// Pinned registers are written back
        PinnedRegsSquashDone,    /// Regs pinning status updated after squash
        RecoverInst,             /// Is a recover instruction
        BlockingInst,            /// Is a blocking instruction
        ThreadsyncWait,          /// Is a thread synchronization instruction
        SerializeBefore,         /// Needs to serialize on
                                 /// instructions ahead of it
        SerializeAfter,          /// Needs to serialize instructions behind it
        SerializeHandled,        /// Serialization has been handled
        NumStatus
    };

    enum Flags {
        NotAnInst,
        TranslationStarted,
        TranslationCompleted,
        PossibleLoadViolation,
        HitExternalSnoop,
        EffAddrValid,
        RecordResult,
        Predicate,
        MemAccPredicate,
        PredTaken,
        IsStrictlyOrdered,
        ReqMade,
        MemOpDone,
        MaxFlags
    };

  public:
    /** The sequence number of the instruction. */
    InstSeqNum seqNum;

    /** The StaticInst used by this BaseDynInst. */
    const StaticInstPtr staticInst;

    /** Pointer to the Impl's CPU object. */
    ImplCPU *cpu;

    BaseCPU *getCpuPtr() { return cpu; }

    /** Pointer to the thread state. */
    ImplState *thread;

    /** The kind of fault this instruction has generated. */
    Fault fault;

    /** InstRecord that tracks this instructions. */
    Trace::InstRecord *traceData;

  protected:
    /** The result of the instruction; assumes an instruction can have many
     *  destination registers.
     */
    std::queue<InstResult> instResult;

    /** PC state for this instruction. */
    TheISA::PCState pc;

  private:
    /* An amalgamation of a lot of boolean values into one */
    std::bitset<MaxFlags> instFlags;

    /** The status of this BaseDynInst.  Several bits can be set. */
    std::bitset<NumStatus> status;

  protected:
     /** Whether or not the source register is ready.
     *  @todo: Not sure this should be here vs the derived class.
     */
    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;

  public:
    /** The thread this instruction is from. */
    ThreadID threadNumber;

    /** Iterator pointing to this BaseDynInst in the list of all insts. */
    ListIt instListIt;

    ////////////////////// Branch Data ///////////////
    /** Predicted PC state after this instruction. */
    TheISA::PCState predPC;

    /** The Macroop if one exists */
    const StaticInstPtr macroop;

    /** How many source registers are ready. */
    uint8_t readyRegs;

  public:
    /////////////////////// Load Store Data //////////////////////
    /** The effective virtual address (lds & stores only). */
    Addr effAddr;

    /** The effective physical address. */
    Addr physEffAddr;

    /** The memory request flags (from translation). */
    unsigned memReqFlags;

    /** data address space ID, for loads & stores. */
    short asid;

    /** The size of the request */
    unsigned effSize;

    /** Pointer to the data for the memory access. */
    uint8_t *memData;

    /** Load queue index. */
    int16_t lqIdx;
    LQIterator lqIt;

    /** Store queue index. */
    int16_t sqIdx;
    SQIterator sqIt;


    /////////////////////// TLB Miss //////////////////////
    /**
     * Saved memory request (needed when the DTB address translation is
     * delayed due to a hw page table walk).
     */
    LSQRequestPtr savedReq;

    /////////////////////// Checker //////////////////////
    // Need a copy of main request pointer to verify on writes.
    RequestPtr reqToVerify;

  protected:
    /** Flattened register index of the destination registers of this
     *  instruction.
     */
    std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;

    /** Physical register index of the destination registers of this
     *  instruction.
     */
    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;

    /** Physical register index of the source registers of this
     *  instruction.
     */
    std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;

    /** Physical register index of the previous producers of the
     *  architected destinations.
     */
    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;


  public:
    /** Records changes to result? */
    void recordResult(bool f) { instFlags[RecordResult] = f; }

    /** Is the effective virtual address valid. */
    bool effAddrValid() const { return instFlags[EffAddrValid]; }
    void effAddrValid(bool b) { instFlags[EffAddrValid] = b; }

    /** Whether or not the memory operation is done. */
    bool memOpDone() const { return instFlags[MemOpDone]; }
    void memOpDone(bool f) { instFlags[MemOpDone] = f; }

    bool notAnInst() const { return instFlags[NotAnInst]; }
    void setNotAnInst() { instFlags[NotAnInst] = true; }


    ////////////////////////////////////////////
    //
    // INSTRUCTION EXECUTION
    //
    ////////////////////////////////////////////

    void demapPage(Addr vaddr, uint64_t asn)
    {
        cpu->demapPage(vaddr, asn);
    }
    void demapInstPage(Addr vaddr, uint64_t asn)
    {
        cpu->demapPage(vaddr, asn);
    }
    void demapDataPage(Addr vaddr, uint64_t asn)
    {
        cpu->demapPage(vaddr, asn);
    }

    Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags,
            const std::vector<bool>& byteEnable = std::vector<bool>());

    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
                   Request::Flags flags, uint64_t *res,
                   const std::vector<bool>& byteEnable = std::vector<bool>());

    Fault initiateMemAMO(Addr addr, unsigned size, Request::Flags flags,
                         AtomicOpFunctorPtr amo_op);

    /** True if the DTB address translation has started. */
    bool translationStarted() const { return instFlags[TranslationStarted]; }
    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }

    /** True if the DTB address translation has completed. */
    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }

    /** True if this address was found to match a previous load and they issued
     * out of order. If that happend, then it's only a problem if an incoming
     * snoop invalidate modifies the line, in which case we need to squash.
     * If nothing modified the line the order doesn't matter.
     */
    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }

    /** True if the address hit a external snoop while sitting in the LSQ.
     * If this is true and a older instruction sees it, this instruction must
     * reexecute
     */
    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }

    /**
     * Returns true if the DTB address translation is being delayed due to a hw
     * page table walk.
     */
    bool isTranslationDelayed() const
    {
        return (translationStarted() && !translationCompleted());
    }

  public:
#ifdef DEBUG
    void dumpSNList();
#endif

    /** Returns the physical register index of the i'th destination
     *  register.
     */
    PhysRegIdPtr renamedDestRegIdx(int idx) const
    {
        return _destRegIdx[idx];
    }

    /** Returns the physical register index of the i'th source register. */
    PhysRegIdPtr renamedSrcRegIdx(int idx) const
    {
        assert(TheISA::MaxInstSrcRegs > idx);
        return _srcRegIdx[idx];
    }

    /** Returns the flattened register index of the i'th destination
     *  register.
     */
    const RegId& flattenedDestRegIdx(int idx) const
    {
        return _flatDestRegIdx[idx];
    }

    /** Returns the physical register index of the previous physical register
     *  that remapped to the same logical register index.
     */
    PhysRegIdPtr prevDestRegIdx(int idx) const
    {
        return _prevDestRegIdx[idx];
    }

    /** Renames a destination register to a physical register.  Also records
     *  the previous physical register that the logical register mapped to.
     */
    void renameDestReg(int idx,
                       PhysRegIdPtr renamed_dest,
                       PhysRegIdPtr previous_rename)
    {
        _destRegIdx[idx] = renamed_dest;
        _prevDestRegIdx[idx] = previous_rename;
        if (renamed_dest->isPinned())
            setPinnedRegsRenamed();
    }

    /** Renames a source logical register to the physical register which
     *  has/will produce that logical register's result.
     *  @todo: add in whether or not the source register is ready.
     */
    void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
    {
        _srcRegIdx[idx] = renamed_src;
    }

    /** Flattens a destination architectural register index into a logical
     * index.
     */
    void flattenDestReg(int idx, const RegId& flattened_dest)
    {
        _flatDestRegIdx[idx] = flattened_dest;
    }
    /** BaseDynInst constructor given a binary instruction.
     *  @param staticInst A StaticInstPtr to the underlying instruction.
     *  @param pc The PC state for the instruction.
     *  @param predPC The predicted next PC state for the instruction.
     *  @param seq_num The sequence number of the instruction.
     *  @param cpu Pointer to the instruction's CPU.
     */
    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
                TheISA::PCState pc, TheISA::PCState predPC,
                InstSeqNum seq_num, ImplCPU *cpu);

    /** BaseDynInst constructor given a StaticInst pointer.
     *  @param _staticInst The StaticInst for this BaseDynInst.
     */
    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);

    /** BaseDynInst destructor. */
    ~BaseDynInst();

  private:
    /** Function to initialize variables in the constructors. */
    void initVars();

  public:
    /** Dumps out contents of this BaseDynInst. */
    void dump();

    /** Dumps out contents of this BaseDynInst into given string. */
    void dump(std::string &outstring);

    /** Read this CPU's ID. */
    int cpuId() const { return cpu->cpuId(); }

    /** Read this CPU's Socket ID. */
    uint32_t socketId() const { return cpu->socketId(); }

    /** Read this CPU's data requestor ID */
    MasterID masterId() const { return cpu->dataMasterId(); }

    /** Read this context's system-wide ID **/
    ContextID contextId() const { return thread->contextId(); }

    /** Returns the fault type. */
    Fault getFault() const { return fault; }
    /** TODO: This I added for the LSQRequest side to be able to modify the
     * fault. There should be a better mechanism in place. */
    Fault& getFault() { return fault; }

    /** Checks whether or not this instruction has had its branch target
     *  calculated yet.  For now it is not utilized and is hacked to be
     *  always false.
     *  @todo: Actually use this instruction.
     */
    bool doneTargCalc() { return false; }

    /** Set the predicted target of this current instruction. */
    void setPredTarg(const TheISA::PCState &_predPC)
    {
        predPC = _predPC;
    }

    const TheISA::PCState &readPredTarg() { return predPC; }

    /** Returns the predicted PC immediately after the branch. */
    Addr predInstAddr() { return predPC.instAddr(); }

    /** Returns the predicted PC two instructions after the branch */
    Addr predNextInstAddr() { return predPC.nextInstAddr(); }

    /** Returns the predicted micro PC after the branch */
    Addr predMicroPC() { return predPC.microPC(); }

    /** Returns whether the instruction was predicted taken or not. */
    bool readPredTaken()
    {
        return instFlags[PredTaken];
    }

    void setPredTaken(bool predicted_taken)
    {
        instFlags[PredTaken] = predicted_taken;
    }

    /** Returns whether the instruction mispredicted. */
    bool mispredicted()
    {
        TheISA::PCState tempPC = pc;
        TheISA::advancePC(tempPC, staticInst);
        return !(tempPC == predPC);
    }

    //
    //  Instruction types.  Forward checks to StaticInst object.
    //
    bool isNop()          const { return staticInst->isNop(); }
    bool isMemRef()       const { return staticInst->isMemRef(); }
    bool isLoad()         const { return staticInst->isLoad(); }
    bool isStore()        const { return staticInst->isStore(); }
    bool isAtomic()       const { return staticInst->isAtomic(); }
    bool isStoreConditional() const
    { return staticInst->isStoreConditional(); }
    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
    bool isInteger()      const { return staticInst->isInteger(); }
    bool isFloating()     const { return staticInst->isFloating(); }
    bool isVector()       const { return staticInst->isVector(); }
    bool isControl()      const { return staticInst->isControl(); }
    bool isCall()         const { return staticInst->isCall(); }
    bool isReturn()       const { return staticInst->isReturn(); }
    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
    bool isThreadSync()   const { return staticInst->isThreadSync(); }
    bool isSerializing()  const { return staticInst->isSerializing(); }
    bool isSerializeBefore() const
    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
    bool isSerializeAfter() const
    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
    bool isQuiesce() const { return staticInst->isQuiesce(); }
    bool isIprAccess() const { return staticInst->isIprAccess(); }
    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
    bool isSyscall() const { return staticInst->isSyscall(); }
    bool isMacroop() const { return staticInst->isMacroop(); }
    bool isMicroop() const { return staticInst->isMicroop(); }
    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
    bool isMicroBranch() const { return staticInst->isMicroBranch(); }

    /** Temporarily sets this instruction as a serialize before instruction. */
    void setSerializeBefore() { status.set(SerializeBefore); }

    /** Clears the serializeBefore part of this instruction. */
    void clearSerializeBefore() { status.reset(SerializeBefore); }

    /** Checks if this serializeBefore is only temporarily set. */
    bool isTempSerializeBefore() { return status[SerializeBefore]; }

    /** Temporarily sets this instruction as a serialize after instruction. */
    void setSerializeAfter() { status.set(SerializeAfter); }

    /** Clears the serializeAfter part of this instruction.*/
    void clearSerializeAfter() { status.reset(SerializeAfter); }

    /** Checks if this serializeAfter is only temporarily set. */
    bool isTempSerializeAfter() { return status[SerializeAfter]; }

    /** Sets the serialization part of this instruction as handled. */
    void setSerializeHandled() { status.set(SerializeHandled); }

    /** Checks if the serialization part of this instruction has been
     *  handled.  This does not apply to the temporary serializing
     *  state; it only applies to this instruction's own permanent
     *  serializing state.
     */
    bool isSerializeHandled() { return status[SerializeHandled]; }

    /** Returns the opclass of this instruction. */
    OpClass opClass() const { return staticInst->opClass(); }

    /** Returns the branch target address. */
    TheISA::PCState branchTarget() const
    { return staticInst->branchTarget(pc); }

    /** Returns the number of source registers. */
    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }

    /** Returns the number of destination registers. */
    int8_t numDestRegs() const { return staticInst->numDestRegs(); }

    // the following are used to track physical register usage
    // for machines with separate int & FP reg files
    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
    int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
    int8_t numVecDestRegs() const { return staticInst->numVecDestRegs(); }
    int8_t numVecElemDestRegs() const
    {
        return staticInst->numVecElemDestRegs();
    }
    int8_t
    numVecPredDestRegs() const
    {
        return staticInst->numVecPredDestRegs();
    }

    /** Returns the logical register index of the i'th destination register. */
    const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }

    /** Returns the logical register index of the i'th source register. */
    const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }

    /** Return the size of the instResult queue. */
    uint8_t resultSize() { return instResult.size(); }

    /** Pops a result off the instResult queue.
     * If the result stack is empty, return the default value.
     * */
    InstResult popResult(InstResult dflt = InstResult())
    {
        if (!instResult.empty()) {
            InstResult t = instResult.front();
            instResult.pop();
            return t;
        }
        return dflt;
    }

    /** Pushes a result onto the instResult queue. */
    /** @{ */
    /** Scalar result. */
    template<typename T>
    void setScalarResult(T&& t)
    {
        if (instFlags[RecordResult]) {
            instResult.push(InstResult(std::forward<T>(t),
                        InstResult::ResultType::Scalar));
        }
    }

    /** Full vector result. */
    template<typename T>
    void setVecResult(T&& t)
    {
        if (instFlags[RecordResult]) {
            instResult.push(InstResult(std::forward<T>(t),
                        InstResult::ResultType::VecReg));
        }
    }

    /** Vector element result. */
    template<typename T>
    void setVecElemResult(T&& t)
    {
        if (instFlags[RecordResult]) {
            instResult.push(InstResult(std::forward<T>(t),
                        InstResult::ResultType::VecElem));
        }
    }

    /** Predicate result. */
    template<typename T>
    void setVecPredResult(T&& t)
    {
        if (instFlags[RecordResult]) {
            instResult.push(InstResult(std::forward<T>(t),
                            InstResult::ResultType::VecPredReg));
        }
    }
    /** @} */

    /** Records an integer register being set to a value. */
    void setIntRegOperand(const StaticInst *si, int idx, RegVal val)
    {
        setScalarResult(val);
    }

    /** Records a CC register being set to a value. */
    void setCCRegOperand(const StaticInst *si, int idx, RegVal val)
    {
        setScalarResult(val);
    }

    /** Record a vector register being set to a value */
    void setVecRegOperand(const StaticInst *si, int idx,
            const VecRegContainer& val)
    {
        setVecResult(val);
    }

    /** Records an fp register being set to an integer value. */
    void
    setFloatRegOperandBits(const StaticInst *si, int idx, RegVal val)
    {
        setScalarResult(val);
    }

    /** Record a vector register being set to a value */
    void setVecElemOperand(const StaticInst *si, int idx, const VecElem val)
    {
        setVecElemResult(val);
    }

    /** Record a vector register being set to a value */
    void setVecPredRegOperand(const StaticInst *si, int idx,
                              const VecPredRegContainer& val)
    {
        setVecPredResult(val);
    }

    /** Records that one of the source registers is ready. */
    void markSrcRegReady();

    /** Marks a specific register as ready. */
    void markSrcRegReady(RegIndex src_idx);

    /** Returns if a source register is ready. */
    bool isReadySrcRegIdx(int idx) const
    {
        return this->_readySrcRegIdx[idx];
    }

    /** Sets this instruction as completed. */
    void setCompleted() { status.set(Completed); }

    /** Returns whether or not this instruction is completed. */
    bool isCompleted() const { return status[Completed]; }

    /** Marks the result as ready. */
    void setResultReady() { status.set(ResultReady); }

    /** Returns whether or not the result is ready. */
    bool isResultReady() const { return status[ResultReady]; }

    /** Sets this instruction as ready to issue. */
    void setCanIssue() { status.set(CanIssue); }

    /** Returns whether or not this instruction is ready to issue. */
    bool readyToIssue() const { return status[CanIssue]; }

    /** Clears this instruction being able to issue. */
    void clearCanIssue() { status.reset(CanIssue); }

    /** Sets this instruction as issued from the IQ. */
    void setIssued() { status.set(Issued); }

    /** Returns whether or not this instruction has issued. */
    bool isIssued() const { return status[Issued]; }

    /** Clears this instruction as being issued. */
    void clearIssued() { status.reset(Issued); }

    /** Sets this instruction as executed. */
    void setExecuted() { status.set(Executed); }

    /** Returns whether or not this instruction has executed. */
    bool isExecuted() const { return status[Executed]; }

    /** Sets this instruction as ready to commit. */
    void setCanCommit() { status.set(CanCommit); }

    /** Clears this instruction as being ready to commit. */
    void clearCanCommit() { status.reset(CanCommit); }

    /** Returns whether or not this instruction is ready to commit. */
    bool readyToCommit() const { return status[CanCommit]; }

    void setAtCommit() { status.set(AtCommit); }

    bool isAtCommit() { return status[AtCommit]; }

    /** Sets this instruction as committed. */
    void setCommitted() { status.set(Committed); }

    /** Returns whether or not this instruction is committed. */
    bool isCommitted() const { return status[Committed]; }

    /** Sets this instruction as squashed. */
    void setSquashed();

    /** Returns whether or not this instruction is squashed. */
    bool isSquashed() const { return status[Squashed]; }

    //Instruction Queue Entry
    //-----------------------
    /** Sets this instruction as a entry the IQ. */
    void setInIQ() { status.set(IqEntry); }

    /** Sets this instruction as a entry the IQ. */
    void clearInIQ() { status.reset(IqEntry); }

    /** Returns whether or not this instruction has issued. */
    bool isInIQ() const { return status[IqEntry]; }

    /** Sets this instruction as squashed in the IQ. */
    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}

    /** Returns whether or not this instruction is squashed in the IQ. */
    bool isSquashedInIQ() const { return status[SquashedInIQ]; }


    //Load / Store Queue Functions
    //-----------------------
    /** Sets this instruction as a entry the LSQ. */
    void setInLSQ() { status.set(LsqEntry); }

    /** Sets this instruction as a entry the LSQ. */
    void removeInLSQ() { status.reset(LsqEntry); }

    /** Returns whether or not this instruction is in the LSQ. */
    bool isInLSQ() const { return status[LsqEntry]; }

    /** Sets this instruction as squashed in the LSQ. */
    void setSquashedInLSQ() { status.set(SquashedInLSQ); status.set(Squashed);}

    /** Returns whether or not this instruction is squashed in the LSQ. */
    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }


    //Reorder Buffer Functions
    //-----------------------
    /** Sets this instruction as a entry the ROB. */
    void setInROB() { status.set(RobEntry); }

    /** Sets this instruction as a entry the ROB. */
    void clearInROB() { status.reset(RobEntry); }

    /** Returns whether or not this instruction is in the ROB. */
    bool isInROB() const { return status[RobEntry]; }

    /** Sets this instruction as squashed in the ROB. */
    void setSquashedInROB() { status.set(SquashedInROB); }

    /** Returns whether or not this instruction is squashed in the ROB. */
    bool isSquashedInROB() const { return status[SquashedInROB]; }

    /** Returns whether pinned registers are renamed */
    bool isPinnedRegsRenamed() const { return status[PinnedRegsRenamed]; }

    /** Sets the destination registers as renamed */
    void
    setPinnedRegsRenamed()
    {
        assert(!status[PinnedRegsSquashDone]);
        assert(!status[PinnedRegsWritten]);
        status.set(PinnedRegsRenamed);
    }

    /** Returns whether destination registers are written */
    bool isPinnedRegsWritten() const { return status[PinnedRegsWritten]; }

    /** Sets destination registers as written */
    void
    setPinnedRegsWritten()
    {
        assert(!status[PinnedRegsSquashDone]);
        assert(status[PinnedRegsRenamed]);
        status.set(PinnedRegsWritten);
    }

    /** Return whether dest registers' pinning status updated after squash */
    bool
    isPinnedRegsSquashDone() const { return status[PinnedRegsSquashDone]; }

    /** Sets dest registers' status updated after squash */
    void
    setPinnedRegsSquashDone() {
        assert(!status[PinnedRegsSquashDone]);
        status.set(PinnedRegsSquashDone);
    }

    /** Read the PC state of this instruction. */
    TheISA::PCState pcState() const { return pc; }

    /** Set the PC state of this instruction. */
    void pcState(const TheISA::PCState &val) { pc = val; }

    /** Read the PC of this instruction. */
    Addr instAddr() const { return pc.instAddr(); }

    /** Read the PC of the next instruction. */
    Addr nextInstAddr() const { return pc.nextInstAddr(); }

    /**Read the micro PC of this instruction. */
    Addr microPC() const { return pc.microPC(); }

    bool readPredicate() const
    {
        return instFlags[Predicate];
    }

    void setPredicate(bool val)
    {
        instFlags[Predicate] = val;

        if (traceData) {
            traceData->setPredicate(val);
        }
    }

    bool
    readMemAccPredicate() const
    {
        return instFlags[MemAccPredicate];
    }

    void
    setMemAccPredicate(bool val)
    {
        instFlags[MemAccPredicate] = val;
    }

    /** Sets the ASID. */
    void setASID(short addr_space_id) { asid = addr_space_id; }
    short getASID() { return asid; }

    /** Sets the thread id. */
    void setTid(ThreadID tid) { threadNumber = tid; }

    /** Sets the pointer to the thread state. */
    void setThreadState(ImplState *state) { thread = state; }

    /** Returns the thread context. */
    ThreadContext *tcBase() { return thread->getTC(); }

  public:
    /** Returns whether or not the eff. addr. source registers are ready. */
    bool eaSrcsReady() const;

    /** Is this instruction's memory access strictly ordered? */
    bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
    void strictlyOrdered(bool so) { instFlags[IsStrictlyOrdered] = so; }

    /** Has this instruction generated a memory request. */
    bool hasRequest() const { return instFlags[ReqMade]; }
    /** Assert this instruction has generated a memory request. */
    void setRequest() { instFlags[ReqMade] = true; }

    /** Returns iterator to this instruction in the list of all insts. */
    ListIt &getInstListIt() { return instListIt; }

    /** Sets iterator for this instruction in the list of all insts. */
    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }

  public:
    /** Returns the number of consecutive store conditional failures. */
    unsigned int readStCondFailures() const
    { return thread->storeCondFailures; }

    /** Sets the number of consecutive store conditional failures. */
    void setStCondFailures(unsigned int sc_failures)
    { thread->storeCondFailures = sc_failures; }

  public:
    // monitor/mwait funtions
    void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
    bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
    void mwaitAtomic(ThreadContext *tc)
    { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
    AddressMonitor *getAddrMonitor()
    { return cpu->getCpuAddrMonitor(threadNumber); }
};

template<class Impl>
Fault
BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
                                   Request::Flags flags,
                                   const std::vector<bool>& byteEnable)
{
    return cpu->pushRequest(
            dynamic_cast<typename DynInstPtr::PtrType>(this),
            /* ld */ true, nullptr, size, addr, flags, nullptr, nullptr,
            byteEnable);
}

template<class Impl>
Fault
BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
                            Request::Flags flags, uint64_t *res,
                            const std::vector<bool>& byteEnable)
{
    return cpu->pushRequest(
            dynamic_cast<typename DynInstPtr::PtrType>(this),
            /* st */ false, data, size, addr, flags, res, nullptr, byteEnable);
}

template<class Impl>
Fault
BaseDynInst<Impl>::initiateMemAMO(Addr addr, unsigned size,
                                  Request::Flags flags,
                                  AtomicOpFunctorPtr amo_op)
{
    // atomic memory instructions do not have data to be written to memory yet
    // since the atomic operations will be executed directly in cache/memory.
    // Therefore, its `data` field is nullptr.
    // Atomic memory requests need to carry their `amo_op` fields to cache/
    // memory
    return cpu->pushRequest(
            dynamic_cast<typename DynInstPtr::PtrType>(this),
            /* atomic */ false, nullptr, size, addr, flags, nullptr,
            std::move(amo_op));
}

#endif // __CPU_BASE_DYN_INST_HH__