/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_BASE_DYN_INST_HH__ #define __CPU_BASE_DYN_INST_HH__ #include #include #include "arch/faults.hh" #include "base/fast_alloc.hh" #include "base/trace.hh" #include "config/full_system.hh" #include "cpu/exetrace.hh" #include "cpu/inst_seq.hh" #include "cpu/op_class.hh" #include "cpu/static_inst.hh" #include "mem/packet.hh" #include "sim/system.hh" /* #include "encumbered/cpu/full/bpred_update.hh" #include "encumbered/cpu/full/spec_memory.hh" #include "encumbered/cpu/full/spec_state.hh" #include "encumbered/mem/functional/main.hh" */ /** * @file * Defines a dynamic instruction context. */ // Forward declaration. class StaticInstPtr; template class BaseDynInst : public FastAlloc, public RefCounted { public: // Typedef for the CPU. typedef typename Impl::FullCPU FullCPU; typedef typename FullCPU::ImplState ImplState; // Binary machine instruction type. typedef TheISA::MachInst MachInst; // Extended machine instruction type typedef TheISA::ExtMachInst ExtMachInst; // Logical register index type. typedef TheISA::RegIndex RegIndex; // Integer register index type. typedef TheISA::IntReg IntReg; // The DynInstPtr type. typedef typename Impl::DynInstPtr DynInstPtr; // The list of instructions iterator type. typedef typename std::list::iterator ListIt; enum { MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs }; /** The StaticInst used by this BaseDynInst. */ StaticInstPtr staticInst; //////////////////////////////////////////// // // INSTRUCTION EXECUTION // //////////////////////////////////////////// /** InstRecord that tracks this instructions. */ Trace::InstRecord *traceData; /** * Does a read to a given address. * @param addr The address to read. * @param data The read's data is written into this parameter. * @param flags The request's flags. * @return Returns any fault due to the read. */ template Fault read(Addr addr, T &data, unsigned flags); /** * Does a write to a given address. * @param data The data to be written. * @param addr The address to write to. * @param flags The request's flags. * @param res The result of the write (for load locked/store conditionals). * @return Returns any fault due to the write. */ template Fault write(T data, Addr addr, unsigned flags, uint64_t *res); void prefetch(Addr addr, unsigned flags); void writeHint(Addr addr, int size, unsigned flags); Fault copySrcTranslate(Addr src); Fault copy(Addr dest); /** @todo: Consider making this private. */ public: /** The sequence number of the instruction. */ InstSeqNum seqNum; /** Is the instruction in the IQ */ bool iqEntry; /** Is the instruction in the ROB */ bool robEntry; /** Is the instruction in the LSQ */ bool lsqEntry; /** Is the instruction completed. */ bool completed; /** Is the instruction's result ready. */ bool resultReady; /** Can this instruction issue. */ bool canIssue; /** Has this instruction issued. */ bool issued; /** Has this instruction executed (or made it through execute) yet. */ bool executed; /** Can this instruction commit. */ bool canCommit; /** Is this instruction committed. */ bool committed; /** Is this instruction squashed. */ bool squashed; /** Is this instruction squashed in the instruction queue. */ bool squashedInIQ; /** Is this instruction squashed in the instruction queue. */ bool squashedInLSQ; /** Is this instruction squashed in the instruction queue. */ bool squashedInROB; /** Is this a recover instruction. */ bool recoverInst; /** Is this a thread blocking instruction. */ bool blockingInst; /* this inst has called thread_block() */ /** Is this a thread syncrhonization instruction. */ bool threadsyncWait; /** The thread this instruction is from. */ short threadNumber; /** data address space ID, for loads & stores. */ short asid; /** How many source registers are ready. */ unsigned readyRegs; /** Pointer to the FullCPU object. */ FullCPU *cpu; /** Pointer to the exec context. */ ImplState *thread; /** The kind of fault this instruction has generated. */ Fault fault; /** The memory request. */ // MemReqPtr req; Request *req; // Packet pkt; uint8_t *memData; /** The effective virtual address (lds & stores only). */ Addr effAddr; /** The effective physical address. */ Addr physEffAddr; /** Effective virtual address for a copy source. */ Addr copySrcEffAddr; /** Effective physical address for a copy source. */ Addr copySrcPhysEffAddr; /** The memory request flags (from translation). */ unsigned memReqFlags; /** The size of the data to be stored. */ int storeSize; /** The data to be stored. */ IntReg storeData; union Result { uint64_t integer; float fp; double dbl; }; /** The result of the instruction; assumes for now that there's only one * destination register. */ Result instResult; /** PC of this instruction. */ Addr PC; /** Next non-speculative PC. It is not filled in at fetch, but rather * once the target of the branch is truly known (either decode or * execute). */ Addr nextPC; /** Predicted next PC. */ Addr predPC; /** Count of total number of dynamic instructions. */ static int instcount; #ifdef DEBUG void dumpSNList(); #endif /** Whether or not the source register is ready. * @todo: Not sure this should be here vs the derived class. */ bool _readySrcRegIdx[MaxInstSrcRegs]; public: /** BaseDynInst constructor given a binary instruction. * @param inst The binary instruction. * @param PC The PC of the instruction. * @param pred_PC The predicted next PC. * @param seq_num The sequence number of the instruction. * @param cpu Pointer to the instruction's CPU. */ BaseDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num, FullCPU *cpu); /** BaseDynInst constructor given a StaticInst pointer. * @param _staticInst The StaticInst for this BaseDynInst. */ BaseDynInst(StaticInstPtr &_staticInst); /** BaseDynInst destructor. */ ~BaseDynInst(); private: /** Function to initialize variables in the constructors. */ void initVars(); public: /** * @todo: Make this function work; currently it is a dummy function. * @param fault Last fault. * @param cmd Last command. * @param addr Virtual address of access. * @param p Memory accessed. * @param nbytes Access size. */ // void // trace_mem(Fault fault, // MemCmd cmd, // Addr addr, // void *p, // int nbytes); /** Dumps out contents of this BaseDynInst. */ void dump(); /** Dumps out contents of this BaseDynInst into given string. */ void dump(std::string &outstring); /** Returns the fault type. */ Fault getFault() { return fault; } /** Checks whether or not this instruction has had its branch target * calculated yet. For now it is not utilized and is hacked to be * always false. * @todo: Actually use this instruction. */ bool doneTargCalc() { return false; } /** Returns the next PC. This could be the speculative next PC if it is * called prior to the actual branch target being calculated. */ Addr readNextPC() { return nextPC; } /** Set the predicted target of this current instruction. */ void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; } /** Returns the predicted target of the branch. */ Addr readPredTarg() { return predPC; } /** Returns whether the instruction was predicted taken or not. */ bool predTaken() { return predPC != (PC + sizeof(MachInst)); } /** Returns whether the instruction mispredicted. */ bool mispredicted() { return predPC != nextPC; } // // Instruction types. Forward checks to StaticInst object. // bool isNop() const { return staticInst->isNop(); } bool isMemRef() const { return staticInst->isMemRef(); } bool isLoad() const { return staticInst->isLoad(); } bool isStore() const { return staticInst->isStore(); } bool isStoreConditional() const { return staticInst->isStoreConditional(); } bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } bool isCopy() const { return staticInst->isCopy(); } bool isInteger() const { return staticInst->isInteger(); } bool isFloating() const { return staticInst->isFloating(); } bool isControl() const { return staticInst->isControl(); } bool isCall() const { return staticInst->isCall(); } bool isReturn() const { return staticInst->isReturn(); } bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } bool isCondCtrl() const { return staticInst->isCondCtrl(); } bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } bool isThreadSync() const { return staticInst->isThreadSync(); } bool isSerializing() const { return staticInst->isSerializing(); } bool isSerializeBefore() const { return staticInst->isSerializeBefore() || serializeBefore; } bool isSerializeAfter() const { return staticInst->isSerializeAfter() || serializeAfter; } bool isMemBarrier() const { return staticInst->isMemBarrier(); } bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } bool isQuiesce() const { return staticInst->isQuiesce(); } bool isIprAccess() const { return staticInst->isIprAccess(); } bool isUnverifiable() const { return staticInst->isUnverifiable(); } /** Temporarily sets this instruction as a serialize before instruction. */ void setSerializeBefore() { serializeBefore = true; } /** Clears the serializeBefore part of this instruction. */ void clearSerializeBefore() { serializeBefore = false; } /** Checks if this serializeBefore is only temporarily set. */ bool isTempSerializeBefore() { return serializeBefore; } /** Tracks if instruction has been externally set as serializeBefore. */ bool serializeBefore; /** Temporarily sets this instruction as a serialize after instruction. */ void setSerializeAfter() { serializeAfter = true; } /** Clears the serializeAfter part of this instruction.*/ void clearSerializeAfter() { serializeAfter = false; } /** Checks if this serializeAfter is only temporarily set. */ bool isTempSerializeAfter() { return serializeAfter; } /** Tracks if instruction has been externally set as serializeAfter. */ bool serializeAfter; /** Checks if the serialization part of this instruction has been * handled. This does not apply to the temporary serializing * state; it only applies to this instruction's own permanent * serializing state. */ bool isSerializeHandled() { return serializeHandled; } /** Sets the serialization part of this instruction as handled. */ void setSerializeHandled() { serializeHandled = true; } /** Whether or not the serialization of this instruction has been handled. */ bool serializeHandled; /** Returns the opclass of this instruction. */ OpClass opClass() const { return staticInst->opClass(); } /** Returns the branch target address. */ Addr branchTarget() const { return staticInst->branchTarget(PC); } /** Returns the number of source registers. */ int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } /** Returns the number of destination registers. */ int8_t numDestRegs() const { return staticInst->numDestRegs(); } // the following are used to track physical register usage // for machines with separate int & FP reg files int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } /** Returns the logical register index of the i'th destination register. */ RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); } /** Returns the logical register index of the i'th source register. */ RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } /** Returns the result of an integer instruction. */ uint64_t readIntResult() { return instResult.integer; } /** Returns the result of a floating point instruction. */ float readFloatResult() { return instResult.fp; } /** Returns the result of a floating point (double) instruction. */ double readDoubleResult() { return instResult.dbl; } void setIntReg(const StaticInst *si, int idx, uint64_t val) { instResult.integer = val; } void setFloatRegSingle(const StaticInst *si, int idx, float val) { instResult.fp = val; } void setFloatRegDouble(const StaticInst *si, int idx, double val) { instResult.dbl = val; } void setFloatRegInt(const StaticInst *si, int idx, uint64_t val) { instResult.integer = val; } /** Records that one of the source registers is ready. */ void markSrcRegReady(); /** Marks a specific register as ready. */ void markSrcRegReady(RegIndex src_idx); /** Returns if a source register is ready. */ bool isReadySrcRegIdx(int idx) const { return this->_readySrcRegIdx[idx]; } /** Sets this instruction as completed. */ void setCompleted() { completed = true; } /** Returns whether or not this instruction is completed. */ bool isCompleted() const { return completed; } void setResultReady() { resultReady = true; } bool isResultReady() const { return resultReady; } /** Sets this instruction as ready to issue. */ void setCanIssue() { canIssue = true; } /** Returns whether or not this instruction is ready to issue. */ bool readyToIssue() const { return canIssue; } /** Sets this instruction as issued from the IQ. */ void setIssued() { issued = true; } /** Returns whether or not this instruction has issued. */ bool isIssued() const { return issued; } /** Sets this instruction as executed. */ void setExecuted() { executed = true; } /** Returns whether or not this instruction has executed. */ bool isExecuted() const { return executed; } /** Sets this instruction as ready to commit. */ void setCanCommit() { canCommit = true; } /** Clears this instruction as being ready to commit. */ void clearCanCommit() { canCommit = false; } /** Returns whether or not this instruction is ready to commit. */ bool readyToCommit() const { return canCommit; } /** Sets this instruction as committed. */ void setCommitted() { committed = true; } /** Returns whether or not this instruction is committed. */ bool isCommitted() const { return committed; } /** Sets this instruction as squashed. */ void setSquashed() { squashed = true; } /** Returns whether or not this instruction is squashed. */ bool isSquashed() const { return squashed; } //Instruction Queue Entry //----------------------- /** Sets this instruction as a entry the IQ. */ void setInIQ() { iqEntry = true; } /** Sets this instruction as a entry the IQ. */ void removeInIQ() { iqEntry = false; } /** Sets this instruction as squashed in the IQ. */ void setSquashedInIQ() { squashedInIQ = true; squashed = true;} /** Returns whether or not this instruction is squashed in the IQ. */ bool isSquashedInIQ() const { return squashedInIQ; } /** Returns whether or not this instruction has issued. */ bool isInIQ() const { return iqEntry; } //Load / Store Queue Functions //----------------------- /** Sets this instruction as a entry the LSQ. */ void setInLSQ() { lsqEntry = true; } /** Sets this instruction as a entry the LSQ. */ void removeInLSQ() { lsqEntry = false; } /** Sets this instruction as squashed in the LSQ. */ void setSquashedInLSQ() { squashedInLSQ = true;} /** Returns whether or not this instruction is squashed in the LSQ. */ bool isSquashedInLSQ() const { return squashedInLSQ; } /** Returns whether or not this instruction is in the LSQ. */ bool isInLSQ() const { return lsqEntry; } //Reorder Buffer Functions //----------------------- /** Sets this instruction as a entry the ROB. */ void setInROB() { robEntry = true; } /** Sets this instruction as a entry the ROB. */ void removeInROB() { robEntry = false; } /** Sets this instruction as squashed in the ROB. */ void setSquashedInROB() { squashedInROB = true; } /** Returns whether or not this instruction is squashed in the ROB. */ bool isSquashedInROB() const { return squashedInROB; } /** Returns whether or not this instruction is in the ROB. */ bool isInROB() const { return robEntry; } /** Read the PC of this instruction. */ const Addr readPC() const { return PC; } /** Set the next PC of this instruction (its actual target). */ void setNextPC(uint64_t val) { nextPC = val; // instResult.integer = val; } void setASID(short addr_space_id) { asid = addr_space_id; } void setThread(unsigned tid) { threadNumber = tid; } void setState(ImplState *state) { thread = state; } /** Returns the exec context. * @todo: Remove this once the ExecContext is no longer used. */ ExecContext *xcBase() { return thread->getXCProxy(); } private: /** Instruction effective address. * @todo: Consider if this is necessary or not. */ Addr instEffAddr; /** Whether or not the effective address calculation is completed. * @todo: Consider if this is necessary or not. */ bool eaCalcDone; public: /** Sets the effective address. */ void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; } /** Returns the effective address. */ const Addr &getEA() const { return instEffAddr; } /** Returns whether or not the eff. addr. calculation has been completed. */ bool doneEACalc() { return eaCalcDone; } /** Returns whether or not the eff. addr. source registers are ready. */ bool eaSrcsReady(); /** Whether or not the memory operation is done. */ bool memOpDone; public: /** Load queue index. */ int16_t lqIdx; /** Store queue index. */ int16_t sqIdx; bool reachedCommit; /** Iterator pointing to this BaseDynInst in the list of all insts. */ ListIt instListIt; /** Returns iterator to this instruction in the list of all insts. */ ListIt &getInstListIt() { return instListIt; } /** Sets iterator for this instruction in the list of all insts. */ void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; } }; template template inline Fault BaseDynInst::read(Addr addr, T &data, unsigned flags) { if (executed) { panic("Not supposed to re-execute with split mem ops!"); fault = cpu->read(req, data, lqIdx); return fault; } req = new Request(); req->setVirt(asid, addr, sizeof(T), flags, this->PC); req->setThreadContext(thread->cpuId, threadNumber); if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() > TheISA::VMPageSize) { return TheISA::genAlignmentFault(); } fault = cpu->translateDataReadReq(req); effAddr = req->getVaddr(); physEffAddr = req->getPaddr(); memReqFlags = req->getFlags(); if (fault == NoFault) { #if FULL_SYSTEM if (cpu->system->memctrl->badaddr(physEffAddr)) { fault = TheISA::genMachineCheckFault(); data = (T)-1; this->setExecuted(); } else { fault = cpu->read(req, data, lqIdx); } #else fault = cpu->read(req, data, lqIdx); #endif } else { // Return a fixed value to keep simulation deterministic even // along misspeculated paths. data = (T)-1; // Commit will have to clean up whatever happened. Set this // instruction as executed. this->setExecuted(); } if (traceData) { traceData->setAddr(addr); traceData->setData(data); } return fault; } template template inline Fault BaseDynInst::write(T data, Addr addr, unsigned flags, uint64_t *res) { if (traceData) { traceData->setAddr(addr); traceData->setData(data); } req = new Request(); req->setVirt(asid, addr, sizeof(T), flags, this->PC); req->setThreadContext(thread->cpuId, threadNumber); if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() > TheISA::VMPageSize) { return TheISA::genAlignmentFault(); } fault = cpu->translateDataWriteReq(req); effAddr = req->getVaddr(); physEffAddr = req->getPaddr(); memReqFlags = req->getFlags(); if (fault == NoFault) { #if FULL_SYSTEM if (cpu->system->memctrl->badaddr(physEffAddr)) { fault = TheISA::genMachineCheckFault(); } else { fault = cpu->write(req, data, sqIdx); } #else fault = cpu->write(req, data, sqIdx); #endif } if (res) { // always return some result to keep misspeculated paths // (which will ignore faults) deterministic *res = (fault == NoFault) ? req->getScResult() : 0; } return fault; } #endif // __CPU_BASE_DYN_INST_HH__