/* * Copyright (c) 2011,2013,2017 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim * Geoffrey Blake */ #include "cpu/checker/cpu.hh" #include #include #include "arch/generic/tlb.hh" #include "arch/kernel_stats.hh" #include "arch/vtophys.hh" #include "cpu/base.hh" #include "cpu/simple_thread.hh" #include "cpu/static_inst.hh" #include "cpu/thread_context.hh" #include "params/CheckerCPU.hh" #include "sim/full_system.hh" using namespace std; using namespace TheISA; void CheckerCPU::init() { masterId = systemPtr->getMasterId(this); } CheckerCPU::CheckerCPU(Params *p) : BaseCPU(p, true), systemPtr(NULL), icachePort(NULL), dcachePort(NULL), tc(NULL), thread(NULL) { curStaticInst = NULL; curMacroStaticInst = NULL; numInst = 0; startNumInst = 0; numLoad = 0; startNumLoad = 0; youngestSN = 0; changedPC = willChangePC = false; exitOnError = p->exitOnError; warnOnlyOnLoadError = p->warnOnlyOnLoadError; itb = p->itb; dtb = p->dtb; workload = p->workload; updateOnError = true; } CheckerCPU::~CheckerCPU() { } void CheckerCPU::setSystem(System *system) { const Params *p(dynamic_cast(_params)); systemPtr = system; if (FullSystem) { thread = new SimpleThread(this, 0, systemPtr, itb, dtb, p->isa[0], false); } else { thread = new SimpleThread(this, 0, systemPtr, workload.size() ? workload[0] : NULL, itb, dtb, p->isa[0]); } tc = thread->getTC(); threadContexts.push_back(tc); thread->kernelStats = NULL; // Thread should never be null after this assert(thread != NULL); } void CheckerCPU::setIcachePort(MasterPort *icache_port) { icachePort = icache_port; } void CheckerCPU::setDcachePort(MasterPort *dcache_port) { dcachePort = dcache_port; } void CheckerCPU::serialize(ostream &os) const { } void CheckerCPU::unserialize(CheckpointIn &cp) { } Fault CheckerCPU::readMem(Addr addr, uint8_t *data, unsigned size, Request::Flags flags) { Fault fault = NoFault; int fullSize = size; Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); bool checked_flags = false; bool flags_match = true; Addr pAddr = 0x0; if (secondAddr > addr) size = secondAddr - addr; // Need to account for multiple accesses like the Atomic and TimingSimple while (1) { auto mem_req = std::make_shared( 0, addr, size, flags, masterId, thread->pcState().instAddr(), tc->contextId()); // translate to physical address fault = dtb->translateFunctional(mem_req, tc, BaseTLB::Read); if (!checked_flags && fault == NoFault && unverifiedReq) { flags_match = checkFlags(unverifiedReq, mem_req->getVaddr(), mem_req->getPaddr(), mem_req->getFlags()); pAddr = mem_req->getPaddr(); checked_flags = true; } // Now do the access if (fault == NoFault && !mem_req->getFlags().isSet(Request::NO_ACCESS)) { PacketPtr pkt = Packet::createRead(mem_req); pkt->dataStatic(data); if (!(mem_req->isUncacheable() || mem_req->isMmappedIpr())) { // Access memory to see if we have the same data dcachePort->sendFunctional(pkt); } else { // Assume the data is correct if it's an uncached access memcpy(data, unverifiedMemData, size); } delete pkt; } if (fault != NoFault) { if (mem_req->isPrefetch()) { fault = NoFault; } break; } //If we don't need to access a second cache line, stop now. if (secondAddr <= addr) { break; } // Setup for accessing next cache line data += size; unverifiedMemData += size; size = addr + fullSize - secondAddr; addr = secondAddr; } if (!flags_match) { warn("%lli: Flags do not match CPU:%#x %#x %#x Checker:%#x %#x %#x\n", curTick(), unverifiedReq->getVaddr(), unverifiedReq->getPaddr(), unverifiedReq->getFlags(), addr, pAddr, flags); handleError(); } return fault; } Fault CheckerCPU::writeMem(uint8_t *data, unsigned size, Addr addr, Request::Flags flags, uint64_t *res) { Fault fault = NoFault; bool checked_flags = false; bool flags_match = true; Addr pAddr = 0x0; static uint8_t zero_data[64] = {}; int fullSize = size; Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); if (secondAddr > addr) size = secondAddr - addr; // Need to account for a multiple access like Atomic and Timing CPUs while (1) { auto mem_req = std::make_shared( 0, addr, size, flags, masterId, thread->pcState().instAddr(), tc->contextId()); // translate to physical address fault = dtb->translateFunctional(mem_req, tc, BaseTLB::Write); if (!checked_flags && fault == NoFault && unverifiedReq) { flags_match = checkFlags(unverifiedReq, mem_req->getVaddr(), mem_req->getPaddr(), mem_req->getFlags()); pAddr = mem_req->getPaddr(); checked_flags = true; } /* * We don't actually check memory for the store because there * is no guarantee it has left the lsq yet, and therefore we * can't verify the memory on stores without lsq snooping * enabled. This is left as future work for the Checker: LSQ snooping * and memory validation after stores have committed. */ bool was_prefetch = mem_req->isPrefetch(); //If we don't need to access a second cache line, stop now. if (fault != NoFault || secondAddr <= addr) { if (fault != NoFault && was_prefetch) { fault = NoFault; } break; } //Update size and access address size = addr + fullSize - secondAddr; //And access the right address. addr = secondAddr; } if (!flags_match) { warn("%lli: Flags do not match CPU:%#x %#x Checker:%#x %#x %#x\n", curTick(), unverifiedReq->getVaddr(), unverifiedReq->getPaddr(), unverifiedReq->getFlags(), addr, pAddr, flags); handleError(); } // Assume the result was the same as the one passed in. This checker // doesn't check if the SC should succeed or fail, it just checks the // value. if (unverifiedReq && res && unverifiedReq->extraDataValid()) *res = unverifiedReq->getExtraData(); // Entire purpose here is to make sure we are getting the // same data to send to the mem system as the CPU did. // Cannot check this is actually what went to memory because // there stores can be in ld/st queue or coherent operations // overwriting values. bool extraData = false; if (unverifiedReq) { extraData = unverifiedReq->extraDataValid() ? unverifiedReq->getExtraData() : true; } // If the request is to ZERO a cache block, there is no data to check // against, but it's all zero. We need something to compare to, so use a // const set of zeros. if (flags & Request::STORE_NO_DATA) { assert(!data); assert(sizeof(zero_data) <= fullSize); data = zero_data; } if (unverifiedReq && unverifiedMemData && memcmp(data, unverifiedMemData, fullSize) && extraData) { warn("%lli: Store value does not match value sent to memory! " "data: %#x inst_data: %#x", curTick(), data, unverifiedMemData); handleError(); } return fault; } Addr CheckerCPU::dbg_vtophys(Addr addr) { return vtophys(tc, addr); } /** * Checks if the flags set by the Checker and Checkee match. */ bool CheckerCPU::checkFlags(const RequestPtr &unverified_req, Addr vAddr, Addr pAddr, int flags) { Addr unverifiedVAddr = unverified_req->getVaddr(); Addr unverifiedPAddr = unverified_req->getPaddr(); int unverifiedFlags = unverified_req->getFlags(); if (unverifiedVAddr != vAddr || unverifiedPAddr != pAddr || unverifiedFlags != flags) { return false; } return true; } void CheckerCPU::dumpAndExit() { warn("%lli: Checker PC:%s", curTick(), thread->pcState()); panic("Checker found an error!"); }