/* * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_CHECKER_CPU_HH__ #define __CPU_CHECKER_CPU_HH__ #include #include #include #include "arch/types.hh" #include "base/statistics.hh" #include "config/full_system.hh" #include "cpu/base.hh" #include "cpu/base_dyn_inst.hh" #include "cpu/simple_thread.hh" #include "cpu/pc_event.hh" #include "cpu/static_inst.hh" #include "sim/eventq.hh" // forward declarations #if FULL_SYSTEM namespace TheISA { class ITB; class DTB; } class Processor; class PhysicalMemory; class RemoteGDB; class GDBListener; #else class Process; #endif // FULL_SYSTEM template class BaseDynInst; class CheckerCPUParams; class ThreadContext; class MemInterface; class Checkpoint; class Request; /** * CheckerCPU class. Dynamically verifies instructions as they are * completed by making sure that the instruction and its results match * the independent execution of the benchmark inside the checker. The * checker verifies instructions in order, regardless of the order in * which instructions complete. There are certain results that can * not be verified, specifically the result of a store conditional or * the values of uncached accesses. In these cases, and with * instructions marked as "IsUnverifiable", the checker assumes that * the value from the main CPU's execution is correct and simply * copies that value. It provides a CheckerThreadContext (see * checker/thread_context.hh) that provides hooks for updating the * Checker's state through any ThreadContext accesses. This allows the * checker to be able to correctly verify instructions, even with * external accesses to the ThreadContext that change state. */ class CheckerCPU : public BaseCPU { protected: typedef TheISA::MachInst MachInst; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::MiscReg MiscReg; public: virtual void init(); public: typedef CheckerCPUParams Params; const Params *params() const { return reinterpret_cast(_params); } CheckerCPU(Params *p); virtual ~CheckerCPU(); Process *process; void setSystem(System *system); System *systemPtr; void setIcachePort(Port *icache_port); Port *icachePort; void setDcachePort(Port *dcache_port); Port *dcachePort; virtual Port *getPort(const std::string &name, int idx) { panic("Not supported on checker!"); return NULL; } public: // Primary thread being run. SimpleThread *thread; ThreadContext *tc; TheISA::ITB *itb; TheISA::DTB *dtb; #if FULL_SYSTEM Addr dbg_vtophys(Addr addr); #endif union Result { uint64_t integer; // float fp; double dbl; }; Result result; // current instruction MachInst machInst; // Pointer to the one memory request. RequestPtr memReq; StaticInstPtr curStaticInst; // number of simulated instructions Counter numInst; Counter startNumInst; std::queue miscRegIdxs; virtual Counter totalInstructions() const { return 0; } // number of simulated loads Counter numLoad; Counter startNumLoad; virtual void serialize(std::ostream &os); virtual void unserialize(Checkpoint *cp, const std::string §ion); template Fault read(Addr addr, T &data, unsigned flags); template Fault write(T data, Addr addr, unsigned flags, uint64_t *res); // These functions are only used in CPU models that split // effective address computation from the actual memory access. void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); } Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); } void prefetch(Addr addr, unsigned flags) { // need to do this... } void writeHint(Addr addr, int size, unsigned flags) { // need to do this... } Fault copySrcTranslate(Addr src); Fault copy(Addr dest); // The register accessor methods provide the index of the // instruction's operand (e.g., 0 or 1), not the architectural // register index, to simplify the implementation of register // renaming. We find the architectural register index by indexing // into the instruction's own operand index table. Note that a // raw pointer to the StaticInst is provided instead of a // ref-counted StaticInstPtr to redice overhead. This is fine as // long as these methods don't copy the pointer into any long-term // storage (which is pretty hard to imagine they would have reason // to do). uint64_t readIntRegOperand(const StaticInst *si, int idx) { return thread->readIntReg(si->srcRegIdx(idx)); } FloatReg readFloatRegOperand(const StaticInst *si, int idx, int width) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return thread->readFloatReg(reg_idx, width); } FloatReg readFloatRegOperand(const StaticInst *si, int idx) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return thread->readFloatReg(reg_idx); } FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx, int width) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return thread->readFloatRegBits(reg_idx, width); } FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return thread->readFloatRegBits(reg_idx); } void setIntRegOperand(const StaticInst *si, int idx, uint64_t val) { thread->setIntReg(si->destRegIdx(idx), val); result.integer = val; } void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val, int width) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; thread->setFloatReg(reg_idx, val, width); switch(width) { case 32: result.dbl = (double)val; break; case 64: result.dbl = val; break; }; } void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; thread->setFloatReg(reg_idx, val); result.dbl = (double)val; } void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val, int width) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; thread->setFloatRegBits(reg_idx, val, width); result.integer = val; } void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; thread->setFloatRegBits(reg_idx, val); result.integer = val; } uint64_t readPC() { return thread->readPC(); } uint64_t readNextPC() { return thread->readNextPC(); } void setNextPC(uint64_t val) { thread->setNextPC(val); } MiscReg readMiscRegNoEffect(int misc_reg) { return thread->readMiscRegNoEffect(misc_reg); } MiscReg readMiscReg(int misc_reg) { return thread->readMiscReg(misc_reg); } void setMiscRegNoEffect(int misc_reg, const MiscReg &val) { result.integer = val; miscRegIdxs.push(misc_reg); return thread->setMiscRegNoEffect(misc_reg, val); } void setMiscReg(int misc_reg, const MiscReg &val) { miscRegIdxs.push(misc_reg); return thread->setMiscReg(misc_reg, val); } void recordPCChange(uint64_t val) { changedPC = true; newPC = val; } void recordNextPCChange(uint64_t val) { changedNextPC = true; } void demapPage(Addr vaddr, uint64_t asn) { this->itb->demapPage(vaddr, asn); this->dtb->demapPage(vaddr, asn); } void demapInstPage(Addr vaddr, uint64_t asn) { this->itb->demapPage(vaddr, asn); } void demapDataPage(Addr vaddr, uint64_t asn) { this->dtb->demapPage(vaddr, asn); } bool translateInstReq(Request *req); void translateDataWriteReq(Request *req); void translateDataReadReq(Request *req); #if FULL_SYSTEM void ev5_trap(Fault fault) { fault->invoke(tc); } bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); } #else // Assume that the normal CPU's call to syscall was successful. // The checker's state would have already been updated by the syscall. void syscall(uint64_t callnum) { } #endif void handleError() { if (exitOnError) dumpAndExit(); } bool checkFlags(Request *req); void dumpAndExit(); ThreadContext *tcBase() { return tc; } SimpleThread *threadBase() { return thread; } Result unverifiedResult; Request *unverifiedReq; uint8_t *unverifiedMemData; bool changedPC; bool willChangePC; uint64_t newPC; bool changedNextPC; bool exitOnError; bool updateOnError; bool warnOnlyOnLoadError; InstSeqNum youngestSN; }; /** * Templated Checker class. This Checker class is templated on the * DynInstPtr of the instruction type that will be verified. Proper * template instantiations of the Checker must be placed at the bottom * of checker/cpu.cc. */ template class Checker : public CheckerCPU { public: Checker(Params *p) : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL) { } void switchOut(); void takeOverFrom(BaseCPU *oldCPU); void verify(DynInstPtr &inst); void validateInst(DynInstPtr &inst); void validateExecution(DynInstPtr &inst); void validateState(); void copyResult(DynInstPtr &inst); private: void handleError(DynInstPtr &inst) { if (exitOnError) { dumpAndExit(inst); } else if (updateOnError) { updateThisCycle = true; } } void dumpAndExit(DynInstPtr &inst); bool updateThisCycle; DynInstPtr unverifiedInst; std::list instList; typedef typename std::list::iterator InstListIt; void dumpInsts(); }; #endif // __CPU_CHECKER_CPU_HH__