/* * Copyright (c) 2012 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2007 MIPS Technologies, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Korey Sewell * */ #include #include "arch/utility.hh" #include "base/bigint.hh" #include "config/the_isa.hh" #include "cpu/inorder/resources/cache_unit.hh" #include "cpu/inorder/resources/resource_list.hh" #include "cpu/inorder/cpu.hh" #include "cpu/inorder/first_stage.hh" #include "cpu/inorder/inorder_dyn_inst.hh" #include "cpu/inorder/pipeline_traits.hh" #include "cpu/inorder/resource_pool.hh" #include "cpu/inorder/thread_context.hh" #include "cpu/inorder/thread_state.hh" #include "cpu/activity.hh" #include "cpu/base.hh" #include "cpu/exetrace.hh" #include "cpu/quiesce_event.hh" #include "cpu/simple_thread.hh" #include "cpu/thread_context.hh" #include "debug/Activity.hh" #include "debug/InOrderCPU.hh" #include "debug/InOrderCachePort.hh" #include "debug/Interrupt.hh" #include "debug/Quiesce.hh" #include "debug/RefCount.hh" #include "debug/SkedCache.hh" #include "params/InOrderCPU.hh" #include "sim/full_system.hh" #include "sim/process.hh" #include "sim/stat_control.hh" #include "sim/system.hh" #if THE_ISA == ALPHA_ISA #include "arch/alpha/osfpal.hh" #endif using namespace std; using namespace TheISA; using namespace ThePipeline; InOrderCPU::CachePort::CachePort(CacheUnit *_cacheUnit, const std::string& name) : CpuPort(_cacheUnit->name() + name, _cacheUnit->cpu), cacheUnit(_cacheUnit) { } bool InOrderCPU::CachePort::recvTimingResp(Packet *pkt) { if (pkt->isError()) DPRINTF(InOrderCachePort, "Got error packet back for address: %x\n", pkt->getAddr()); else cacheUnit->processCacheCompletion(pkt); return true; } void InOrderCPU::CachePort::recvRetry() { cacheUnit->recvRetry(); } InOrderCPU::TickEvent::TickEvent(InOrderCPU *c) : Event(CPU_Tick_Pri), cpu(c) { } void InOrderCPU::TickEvent::process() { cpu->tick(); } const char * InOrderCPU::TickEvent::description() const { return "InOrderCPU tick event"; } InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type, Fault fault, ThreadID _tid, DynInstPtr inst, CPUEventPri event_pri) : Event(event_pri), cpu(_cpu) { setEvent(e_type, fault, _tid, inst); } std::string InOrderCPU::eventNames[NumCPUEvents] = { "ActivateThread", "ActivateNextReadyThread", "DeactivateThread", "HaltThread", "SuspendThread", "Trap", "Syscall", "SquashFromMemStall", "UpdatePCs" }; void InOrderCPU::CPUEvent::process() { switch (cpuEventType) { case ActivateThread: cpu->activateThread(tid); cpu->resPool->activateThread(tid); break; case ActivateNextReadyThread: cpu->activateNextReadyThread(); break; case DeactivateThread: cpu->deactivateThread(tid); cpu->resPool->deactivateThread(tid); break; case HaltThread: cpu->haltThread(tid); cpu->resPool->deactivateThread(tid); break; case SuspendThread: cpu->suspendThread(tid); cpu->resPool->suspendThread(tid); break; case SquashFromMemStall: cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid); cpu->resPool->squashDueToMemStall(inst, inst->squashingStage, inst->seqNum, tid); break; case Trap: DPRINTF(InOrderCPU, "Trapping CPU\n"); cpu->trap(fault, tid, inst); cpu->resPool->trap(fault, tid, inst); cpu->trapPending[tid] = false; break; case Syscall: cpu->syscall(inst->syscallNum, tid); cpu->resPool->trap(fault, tid, inst); break; default: fatal("Unrecognized Event Type %s", eventNames[cpuEventType]); } cpu->cpuEventRemoveList.push(this); } const char * InOrderCPU::CPUEvent::description() const { return "InOrderCPU event"; } void InOrderCPU::CPUEvent::scheduleEvent(Cycles delay) { assert(!scheduled() || squashed()); cpu->reschedule(this, cpu->clockEdge(delay), true); } void InOrderCPU::CPUEvent::unscheduleEvent() { if (scheduled()) squash(); } InOrderCPU::InOrderCPU(Params *params) : BaseCPU(params), cpu_id(params->cpu_id), coreType("default"), _status(Idle), tickEvent(this), stageWidth(params->stageWidth), resPool(new ResourcePool(this, params)), isa(numThreads, NULL), timeBuffer(2 , 2), dataPort(resPool->getDataUnit(), ".dcache_port"), instPort(resPool->getInstUnit(), ".icache_port"), removeInstsThisCycle(false), activityRec(params->name, NumStages, 10, params->activity), system(params->system), #ifdef DEBUG cpuEventNum(0), resReqCount(0), #endif // DEBUG drainCount(0), deferRegistration(false/*params->deferRegistration*/), stageTracing(params->stageTracing), lastRunningCycle(0), instsPerSwitch(0) { cpu_params = params; // Resize for Multithreading CPUs thread.resize(numThreads); ThreadID active_threads = params->workload.size(); if (FullSystem) { active_threads = 1; } else { active_threads = params->workload.size(); if (active_threads > MaxThreads) { panic("Workload Size too large. Increase the 'MaxThreads'" "in your InOrder implementation or " "edit your workload size."); } if (active_threads > 1) { threadModel = (InOrderCPU::ThreadModel) params->threadModel; if (threadModel == SMT) { DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n"); } else if (threadModel == SwitchOnCacheMiss) { DPRINTF(InOrderCPU, "Setting Thread Model to " "Switch On Cache Miss\n"); } } else { threadModel = Single; } } for (ThreadID tid = 0; tid < numThreads; ++tid) { isa[tid] = params->isa[tid]; pc[tid].set(0); lastCommittedPC[tid].set(0); if (FullSystem) { // SMT is not supported in FS mode yet. assert(numThreads == 1); thread[tid] = new Thread(this, 0, NULL); } else { if (tid < (ThreadID)params->workload.size()) { DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n", tid, params->workload[tid]->progName()); thread[tid] = new Thread(this, tid, params->workload[tid]); } else { //Allocate Empty thread so M5 can use later //when scheduling threads to CPU Process* dummy_proc = params->workload[0]; thread[tid] = new Thread(this, tid, dummy_proc); } // Eventually set this with parameters... asid[tid] = tid; } // Setup the TC that will serve as the interface to the threads/CPU. InOrderThreadContext *tc = new InOrderThreadContext; tc->cpu = this; tc->thread = thread[tid]; // Setup quiesce event. this->thread[tid]->quiesceEvent = new EndQuiesceEvent(tc); // Give the thread the TC. thread[tid]->tc = tc; thread[tid]->setFuncExeInst(0); globalSeqNum[tid] = 1; // Add the TC to the CPU's list of TC's. this->threadContexts.push_back(tc); } // Initialize TimeBuffer Stage Queues for (int stNum=0; stNum < NumStages - 1; stNum++) { stageQueue[stNum] = new StageQueue(NumStages, NumStages); stageQueue[stNum]->id(stNum); } // Set Up Pipeline Stages for (int stNum=0; stNum < NumStages; stNum++) { if (stNum == 0) pipelineStage[stNum] = new FirstStage(params, stNum); else pipelineStage[stNum] = new PipelineStage(params, stNum); pipelineStage[stNum]->setCPU(this); pipelineStage[stNum]->setActiveThreads(&activeThreads); pipelineStage[stNum]->setTimeBuffer(&timeBuffer); // Take Care of 1st/Nth stages if (stNum > 0) pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]); if (stNum < NumStages - 1) pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]); } // Initialize thread specific variables for (ThreadID tid = 0; tid < numThreads; tid++) { archRegDepMap[tid].setCPU(this); nonSpecInstActive[tid] = false; nonSpecSeqNum[tid] = 0; squashSeqNum[tid] = MaxAddr; lastSquashCycle[tid] = 0; memset(intRegs[tid], 0, sizeof(intRegs[tid])); memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid])); isa[tid]->clear(); // Define dummy instructions and resource requests to be used. dummyInst[tid] = new InOrderDynInst(this, thread[tid], 0, tid, asid[tid]); dummyReq[tid] = new ResourceRequest(resPool->getResource(0)); if (FullSystem) { // Use this dummy inst to force squashing behind every instruction // in pipeline dummyTrapInst[tid] = new InOrderDynInst(this, NULL, 0, 0, 0); dummyTrapInst[tid]->seqNum = 0; dummyTrapInst[tid]->squashSeqNum = 0; dummyTrapInst[tid]->setTid(tid); } trapPending[tid] = false; } // InOrderCPU always requires an interrupt controller. if (!params->defer_registration && !interrupts) { fatal("InOrderCPU %s has no interrupt controller.\n" "Ensure createInterruptController() is called.\n", name()); } dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0); dummyReqInst->setSquashed(); dummyReqInst->resetInstCount(); dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0); dummyBufferInst->setSquashed(); dummyBufferInst->resetInstCount(); endOfSkedIt = skedCache.end(); frontEndSked = createFrontEndSked(); faultSked = createFaultSked(); lastRunningCycle = curCycle(); lockAddr = 0; lockFlag = false; // Schedule First Tick Event, CPU will reschedule itself from here on out. scheduleTickEvent(Cycles(0)); } InOrderCPU::~InOrderCPU() { delete resPool; SkedCacheIt sked_it = skedCache.begin(); SkedCacheIt sked_end = skedCache.end(); while (sked_it != sked_end) { delete (*sked_it).second; sked_it++; } skedCache.clear(); } m5::hash_map InOrderCPU::skedCache; RSkedPtr InOrderCPU::createFrontEndSked() { RSkedPtr res_sked = new ResourceSked(); int stage_num = 0; StageScheduler F(res_sked, stage_num++); StageScheduler D(res_sked, stage_num++); // FETCH F.needs(FetchSeq, FetchSeqUnit::AssignNextPC); F.needs(ICache, FetchUnit::InitiateFetch); // DECODE D.needs(ICache, FetchUnit::CompleteFetch); D.needs(Decode, DecodeUnit::DecodeInst); D.needs(BPred, BranchPredictor::PredictBranch); D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC); DPRINTF(SkedCache, "Resource Sked created for instruction Front End\n"); return res_sked; } RSkedPtr InOrderCPU::createFaultSked() { RSkedPtr res_sked = new ResourceSked(); StageScheduler W(res_sked, NumStages - 1); W.needs(Grad, GraduationUnit::CheckFault); DPRINTF(SkedCache, "Resource Sked created for instruction Faults\n"); return res_sked; } RSkedPtr InOrderCPU::createBackEndSked(DynInstPtr inst) { RSkedPtr res_sked = lookupSked(inst); if (res_sked != NULL) { DPRINTF(SkedCache, "Found %s in sked cache.\n", inst->instName()); return res_sked; } else { res_sked = new ResourceSked(); } int stage_num = ThePipeline::BackEndStartStage; StageScheduler X(res_sked, stage_num++); StageScheduler M(res_sked, stage_num++); StageScheduler W(res_sked, stage_num++); if (!inst->staticInst) { warn_once("Static Instruction Object Not Set. Can't Create" " Back End Schedule"); return NULL; } // EXECUTE X.needs(RegManager, UseDefUnit::MarkDestRegs); for (int idx=0; idx < inst->numSrcRegs(); idx++) { if (!idx || !inst->isStore()) { X.needs(RegManager, UseDefUnit::ReadSrcReg, idx); } } //@todo: schedule non-spec insts to operate on this cycle // as long as all previous insts are done if ( inst->isNonSpeculative() ) { // skip execution of non speculative insts until later } else if ( inst->isMemRef() ) { if ( inst->isLoad() ) { X.needs(AGEN, AGENUnit::GenerateAddr); } } else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) { X.needs(MDU, MultDivUnit::StartMultDiv); } else { X.needs(ExecUnit, ExecutionUnit::ExecuteInst); } // MEMORY if (!inst->isNonSpeculative()) { if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) { M.needs(MDU, MultDivUnit::EndMultDiv); } if ( inst->isLoad() ) { M.needs(DCache, CacheUnit::InitiateReadData); if (inst->splitInst) M.needs(DCache, CacheUnit::InitSecondSplitRead); } else if ( inst->isStore() ) { for (int i = 1; i < inst->numSrcRegs(); i++ ) { M.needs(RegManager, UseDefUnit::ReadSrcReg, i); } M.needs(AGEN, AGENUnit::GenerateAddr); M.needs(DCache, CacheUnit::InitiateWriteData); if (inst->splitInst) M.needs(DCache, CacheUnit::InitSecondSplitWrite); } } // WRITEBACK if (!inst->isNonSpeculative()) { if ( inst->isLoad() ) { W.needs(DCache, CacheUnit::CompleteReadData); if (inst->splitInst) W.needs(DCache, CacheUnit::CompleteSecondSplitRead); } else if ( inst->isStore() ) { W.needs(DCache, CacheUnit::CompleteWriteData); if (inst->splitInst) W.needs(DCache, CacheUnit::CompleteSecondSplitWrite); } } else { // Finally, Execute Speculative Data if (inst->isMemRef()) { if (inst->isLoad()) { W.needs(AGEN, AGENUnit::GenerateAddr); W.needs(DCache, CacheUnit::InitiateReadData); if (inst->splitInst) W.needs(DCache, CacheUnit::InitSecondSplitRead); W.needs(DCache, CacheUnit::CompleteReadData); if (inst->splitInst) W.needs(DCache, CacheUnit::CompleteSecondSplitRead); } else if (inst->isStore()) { if ( inst->numSrcRegs() >= 2 ) { W.needs(RegManager, UseDefUnit::ReadSrcReg, 1); } W.needs(AGEN, AGENUnit::GenerateAddr); W.needs(DCache, CacheUnit::InitiateWriteData); if (inst->splitInst) W.needs(DCache, CacheUnit::InitSecondSplitWrite); W.needs(DCache, CacheUnit::CompleteWriteData); if (inst->splitInst) W.needs(DCache, CacheUnit::CompleteSecondSplitWrite); } } else { W.needs(ExecUnit, ExecutionUnit::ExecuteInst); } } W.needs(Grad, GraduationUnit::CheckFault); for (int idx=0; idx < inst->numDestRegs(); idx++) { W.needs(RegManager, UseDefUnit::WriteDestReg, idx); } if (inst->isControl()) W.needs(BPred, BranchPredictor::UpdatePredictor); W.needs(Grad, GraduationUnit::GraduateInst); // Insert Back Schedule into our cache of // resource schedules addToSkedCache(inst, res_sked); DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n", inst->instName(), inst->getMachInst()); res_sked->print(); return res_sked; } void InOrderCPU::regStats() { /* Register the Resource Pool's stats here.*/ resPool->regStats(); /* Register for each Pipeline Stage */ for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) { pipelineStage[stage_num]->regStats(); } /* Register any of the InOrderCPU's stats here.*/ instsPerCtxtSwitch .name(name() + ".instsPerContextSwitch") .desc("Instructions Committed Per Context Switch") .prereq(instsPerCtxtSwitch); numCtxtSwitches .name(name() + ".contextSwitches") .desc("Number of context switches"); comLoads .name(name() + ".comLoads") .desc("Number of Load instructions committed"); comStores .name(name() + ".comStores") .desc("Number of Store instructions committed"); comBranches .name(name() + ".comBranches") .desc("Number of Branches instructions committed"); comNops .name(name() + ".comNops") .desc("Number of Nop instructions committed"); comNonSpec .name(name() + ".comNonSpec") .desc("Number of Non-Speculative instructions committed"); comInts .name(name() + ".comInts") .desc("Number of Integer instructions committed"); comFloats .name(name() + ".comFloats") .desc("Number of Floating Point instructions committed"); timesIdled .name(name() + ".timesIdled") .desc("Number of times that the entire CPU went into an idle state and" " unscheduled itself") .prereq(timesIdled); idleCycles .name(name() + ".idleCycles") .desc("Number of cycles cpu's stages were not processed"); runCycles .name(name() + ".runCycles") .desc("Number of cycles cpu stages are processed."); activity .name(name() + ".activity") .desc("Percentage of cycles cpu is active") .precision(6); activity = (runCycles / numCycles) * 100; threadCycles .init(numThreads) .name(name() + ".threadCycles") .desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)"); smtCycles .name(name() + ".smtCycles") .desc("Total number of cycles that the CPU was in SMT-mode"); committedInsts .init(numThreads) .name(name() + ".committedInsts") .desc("Number of Instructions committed (Per-Thread)"); committedOps .init(numThreads) .name(name() + ".committedOps") .desc("Number of Ops committed (Per-Thread)"); smtCommittedInsts .init(numThreads) .name(name() + ".smtCommittedInsts") .desc("Number of SMT Instructions committed (Per-Thread)"); totalCommittedInsts .name(name() + ".committedInsts_total") .desc("Number of Instructions committed (Total)"); cpi .name(name() + ".cpi") .desc("CPI: Cycles Per Instruction (Per-Thread)") .precision(6); cpi = numCycles / committedInsts; smtCpi .name(name() + ".smt_cpi") .desc("CPI: Total SMT-CPI") .precision(6); smtCpi = smtCycles / smtCommittedInsts; totalCpi .name(name() + ".cpi_total") .desc("CPI: Total CPI of All Threads") .precision(6); totalCpi = numCycles / totalCommittedInsts; ipc .name(name() + ".ipc") .desc("IPC: Instructions Per Cycle (Per-Thread)") .precision(6); ipc = committedInsts / numCycles; smtIpc .name(name() + ".smt_ipc") .desc("IPC: Total SMT-IPC") .precision(6); smtIpc = smtCommittedInsts / smtCycles; totalIpc .name(name() + ".ipc_total") .desc("IPC: Total IPC of All Threads") .precision(6); totalIpc = totalCommittedInsts / numCycles; BaseCPU::regStats(); } void InOrderCPU::tick() { DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n"); ++numCycles; checkForInterrupts(); bool pipes_idle = true; //Tick each of the stages for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) { pipelineStage[stNum]->tick(); pipes_idle = pipes_idle && pipelineStage[stNum]->idle; } if (pipes_idle) idleCycles++; else runCycles++; // Now advance the time buffers one tick timeBuffer.advance(); for (int sqNum=0; sqNum < NumStages - 1; sqNum++) { stageQueue[sqNum]->advance(); } activityRec.advance(); // Any squashed events, or insts then remove them now cleanUpRemovedEvents(); cleanUpRemovedInsts(); // Re-schedule CPU for this cycle if (!tickEvent.scheduled()) { if (_status == SwitchedOut) { // increment stat lastRunningCycle = curCycle(); } else if (!activityRec.active()) { DPRINTF(InOrderCPU, "sleeping CPU.\n"); lastRunningCycle = curCycle(); timesIdled++; } else { //Tick next_tick = curTick() + cycles(1); //tickEvent.schedule(next_tick); schedule(&tickEvent, clockEdge(Cycles(1))); DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n", clockEdge(Cycles(1))); } } tickThreadStats(); updateThreadPriority(); } void InOrderCPU::init() { BaseCPU::init(); for (ThreadID tid = 0; tid < numThreads; ++tid) { // Set noSquashFromTC so that the CPU doesn't squash when initially // setting up registers. thread[tid]->noSquashFromTC = true; // Initialise the ThreadContext's memory proxies thread[tid]->initMemProxies(thread[tid]->getTC()); } if (FullSystem && !params()->defer_registration) { for (ThreadID tid = 0; tid < numThreads; tid++) { ThreadContext *src_tc = threadContexts[tid]; TheISA::initCPU(src_tc, src_tc->contextId()); } } // Clear noSquashFromTC. for (ThreadID tid = 0; tid < numThreads; ++tid) thread[tid]->noSquashFromTC = false; // Call Initializiation Routine for Resource Pool resPool->init(); } Fault InOrderCPU::hwrei(ThreadID tid) { #if THE_ISA == ALPHA_ISA // Need to clear the lock flag upon returning from an interrupt. setMiscRegNoEffect(AlphaISA::MISCREG_LOCKFLAG, false, tid); thread[tid]->kernelStats->hwrei(); // FIXME: XXX check for interrupts? XXX #endif return NoFault; } bool InOrderCPU::simPalCheck(int palFunc, ThreadID tid) { #if THE_ISA == ALPHA_ISA if (this->thread[tid]->kernelStats) this->thread[tid]->kernelStats->callpal(palFunc, this->threadContexts[tid]); switch (palFunc) { case PAL::halt: halt(); if (--System::numSystemsRunning == 0) exitSimLoop("all cpus halted"); break; case PAL::bpt: case PAL::bugchk: if (this->system->breakpoint()) return false; break; } #endif return true; } void InOrderCPU::checkForInterrupts() { for (int i = 0; i < threadContexts.size(); i++) { ThreadContext *tc = threadContexts[i]; if (interrupts->checkInterrupts(tc)) { Fault interrupt = interrupts->getInterrupt(tc); if (interrupt != NoFault) { DPRINTF(Interrupt, "Processing Intterupt for [tid:%i].\n", tc->threadId()); ThreadID tid = tc->threadId(); interrupts->updateIntrInfo(tc); // Squash from Last Stage in Pipeline unsigned last_stage = NumStages - 1; dummyTrapInst[tid]->squashingStage = last_stage; pipelineStage[last_stage]->setupSquash(dummyTrapInst[tid], tid); // By default, setupSquash will always squash from stage + 1 pipelineStage[BackEndStartStage - 1]->setupSquash(dummyTrapInst[tid], tid); // Schedule Squash Through-out Resource Pool resPool->scheduleEvent( (InOrderCPU::CPUEventType)ResourcePool::SquashAll, dummyTrapInst[tid], Cycles(0)); // Finally, Setup Trap to happen at end of cycle trapContext(interrupt, tid, dummyTrapInst[tid]); } } } } Fault InOrderCPU::getInterrupts() { // Check if there are any outstanding interrupts return interrupts->getInterrupt(threadContexts[0]); } void InOrderCPU::processInterrupts(Fault interrupt) { // Check for interrupts here. For now can copy the code that // exists within isa_fullsys_traits.hh. Also assume that thread 0 // is the one that handles the interrupts. // @todo: Possibly consolidate the interrupt checking code. // @todo: Allow other threads to handle interrupts. assert(interrupt != NoFault); interrupts->updateIntrInfo(threadContexts[0]); DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name()); // Note: Context ID ok here? Impl. of FS mode needs to revisit this trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst); } void InOrderCPU::trapContext(Fault fault, ThreadID tid, DynInstPtr inst, Cycles delay) { scheduleCpuEvent(Trap, fault, tid, inst, delay); trapPending[tid] = true; } void InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst) { fault->invoke(tcBase(tid), inst->staticInst); removePipelineStalls(tid); } void InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid, Cycles delay) { scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay); } void InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num, ThreadID tid) { DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n"); // Squash all instructions in each stage including // instruction that caused the squash (seq_num - 1) // NOTE: The stage bandwidth needs to be cleared so thats why // the stalling instruction is squashed as well. The stalled // instruction is previously placed in another intermediate buffer // while it's stall is being handled. InstSeqNum squash_seq_num = seq_num - 1; for (int stNum=stage_num; stNum >= 0 ; stNum--) { pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid); } } void InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault, ThreadID tid, DynInstPtr inst, Cycles delay, CPUEventPri event_pri) { CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst, event_pri); Tick sked_tick = clockEdge(delay); DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n", eventNames[c_event], curTick() + delay, tid); schedule(cpu_event, sked_tick); // Broadcast event to the Resource Pool // Need to reset tid just in case this is a dummy instruction inst->setTid(tid); // @todo: Is this really right? Should the delay not be passed on? resPool->scheduleEvent(c_event, inst, Cycles(0), 0, tid); } bool InOrderCPU::isThreadActive(ThreadID tid) { list::iterator isActive = std::find(activeThreads.begin(), activeThreads.end(), tid); return (isActive != activeThreads.end()); } bool InOrderCPU::isThreadReady(ThreadID tid) { list::iterator isReady = std::find(readyThreads.begin(), readyThreads.end(), tid); return (isReady != readyThreads.end()); } bool InOrderCPU::isThreadSuspended(ThreadID tid) { list::iterator isSuspended = std::find(suspendedThreads.begin(), suspendedThreads.end(), tid); return (isSuspended != suspendedThreads.end()); } void InOrderCPU::activateNextReadyThread() { if (readyThreads.size() >= 1) { ThreadID ready_tid = readyThreads.front(); // Activate in Pipeline activateThread(ready_tid); // Activate in Resource Pool resPool->activateThread(ready_tid); list::iterator ready_it = std::find(readyThreads.begin(), readyThreads.end(), ready_tid); readyThreads.erase(ready_it); } else { DPRINTF(InOrderCPU, "Attempting to activate new thread, but No Ready Threads to" "activate.\n"); DPRINTF(InOrderCPU, "Unable to switch to next active thread.\n"); } } void InOrderCPU::activateThread(ThreadID tid) { if (isThreadSuspended(tid)) { DPRINTF(InOrderCPU, "Removing [tid:%i] from suspended threads list.\n", tid); list::iterator susp_it = std::find(suspendedThreads.begin(), suspendedThreads.end(), tid); suspendedThreads.erase(susp_it); } if (threadModel == SwitchOnCacheMiss && numActiveThreads() == 1) { DPRINTF(InOrderCPU, "Ignoring activation of [tid:%i], since [tid:%i] is " "already running.\n", tid, activeThreadId()); DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n", tid); readyThreads.push_back(tid); } else if (!isThreadActive(tid)) { DPRINTF(InOrderCPU, "Adding [tid:%i] to active threads list.\n", tid); activeThreads.push_back(tid); activateThreadInPipeline(tid); thread[tid]->lastActivate = curTick(); tcBase(tid)->setStatus(ThreadContext::Active); wakeCPU(); numCtxtSwitches++; } } void InOrderCPU::activateThreadInPipeline(ThreadID tid) { for (int stNum=0; stNum < NumStages; stNum++) { pipelineStage[stNum]->activateThread(tid); } } void InOrderCPU::deactivateContext(ThreadID tid, Cycles delay) { DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid); scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay); // Be sure to signal that there's some activity so the CPU doesn't // deschedule itself. activityRec.activity(); _status = Running; } void InOrderCPU::deactivateThread(ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid); if (isThreadActive(tid)) { DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n", tid); list::iterator thread_it = std::find(activeThreads.begin(), activeThreads.end(), tid); removePipelineStalls(*thread_it); activeThreads.erase(thread_it); // Ideally, this should be triggered from the // suspendContext/Thread functions tcBase(tid)->setStatus(ThreadContext::Suspended); } assert(!isThreadActive(tid)); } void InOrderCPU::removePipelineStalls(ThreadID tid) { DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n", tid); for (int stNum = 0; stNum < NumStages ; stNum++) { pipelineStage[stNum]->removeStalls(tid); } } void InOrderCPU::updateThreadPriority() { if (activeThreads.size() > 1) { //DEFAULT TO ROUND ROBIN SCHEME //e.g. Move highest priority to end of thread list list::iterator list_begin = activeThreads.begin(); unsigned high_thread = *list_begin; activeThreads.erase(list_begin); activeThreads.push_back(high_thread); } } inline void InOrderCPU::tickThreadStats() { /** Keep track of cycles that each thread is active */ list::iterator thread_it = activeThreads.begin(); while (thread_it != activeThreads.end()) { threadCycles[*thread_it]++; thread_it++; } // Keep track of cycles where SMT is active if (activeThreads.size() > 1) { smtCycles++; } } void InOrderCPU::activateContext(ThreadID tid, Cycles delay) { DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid); scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay); // Be sure to signal that there's some activity so the CPU doesn't // deschedule itself. activityRec.activity(); _status = Running; } void InOrderCPU::activateNextReadyContext(Cycles delay) { DPRINTF(InOrderCPU,"Activating next ready thread\n"); scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0], delay, ActivateNextReadyThread_Pri); // Be sure to signal that there's some activity so the CPU doesn't // deschedule itself. activityRec.activity(); _status = Running; } void InOrderCPU::haltContext(ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid); scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid]); activityRec.activity(); } void InOrderCPU::haltThread(ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid); deactivateThread(tid); squashThreadInPipeline(tid); haltedThreads.push_back(tid); tcBase(tid)->setStatus(ThreadContext::Halted); if (threadModel == SwitchOnCacheMiss) { activateNextReadyContext(); } } void InOrderCPU::suspendContext(ThreadID tid) { scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid]); } void InOrderCPU::suspendThread(ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n", tid); deactivateThread(tid); suspendedThreads.push_back(tid); thread[tid]->lastSuspend = curTick(); tcBase(tid)->setStatus(ThreadContext::Suspended); } void InOrderCPU::squashThreadInPipeline(ThreadID tid) { //Squash all instructions in each stage for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) { pipelineStage[stNum]->squash(0 /*seq_num*/, tid); } } PipelineStage* InOrderCPU::getPipeStage(int stage_num) { return pipelineStage[stage_num]; } RegIndex InOrderCPU::flattenRegIdx(RegIndex reg_idx, RegType ®_type, ThreadID tid) { if (reg_idx < FP_Base_DepTag) { reg_type = IntType; return isa[tid]->flattenIntIndex(reg_idx); } else if (reg_idx < Ctrl_Base_DepTag) { reg_type = FloatType; reg_idx -= FP_Base_DepTag; return isa[tid]->flattenFloatIndex(reg_idx); } else { reg_type = MiscType; return reg_idx - TheISA::Ctrl_Base_DepTag; } } uint64_t InOrderCPU::readIntReg(RegIndex reg_idx, ThreadID tid) { DPRINTF(IntRegs, "[tid:%i]: Reading Int. Reg %i as %x\n", tid, reg_idx, intRegs[tid][reg_idx]); return intRegs[tid][reg_idx]; } FloatReg InOrderCPU::readFloatReg(RegIndex reg_idx, ThreadID tid) { DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n", tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]); return floatRegs.f[tid][reg_idx]; } FloatRegBits InOrderCPU::readFloatRegBits(RegIndex reg_idx, ThreadID tid) { DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n", tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]); return floatRegs.i[tid][reg_idx]; } void InOrderCPU::setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid) { if (reg_idx == TheISA::ZeroReg) { DPRINTF(IntRegs, "[tid:%i]: Ignoring Setting of ISA-ZeroReg " "(Int. Reg %i) to %x\n", tid, reg_idx, val); return; } else { DPRINTF(IntRegs, "[tid:%i]: Setting Int. Reg %i to %x\n", tid, reg_idx, val); intRegs[tid][reg_idx] = val; } } void InOrderCPU::setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid) { floatRegs.f[tid][reg_idx] = val; DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to " "%x, %08f\n", tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]); } void InOrderCPU::setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid) { floatRegs.i[tid][reg_idx] = val; DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to " "%x, %08f\n", tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]); } uint64_t InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid) { // If Default value is set, then retrieve target thread if (tid == InvalidThreadID) { tid = TheISA::getTargetThread(tcBase(tid)); } if (reg_idx < FP_Base_DepTag) { // Integer Register File return readIntReg(reg_idx, tid); } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File reg_idx -= FP_Base_DepTag; return readFloatRegBits(reg_idx, tid); } else { reg_idx -= Ctrl_Base_DepTag; return readMiscReg(reg_idx, tid); // Misc. Register File } } void InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val, ThreadID tid) { // If Default value is set, then retrieve target thread if (tid == InvalidThreadID) { tid = TheISA::getTargetThread(tcBase(tid)); } if (reg_idx < FP_Base_DepTag) { // Integer Register File setIntReg(reg_idx, val, tid); } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File reg_idx -= FP_Base_DepTag; setFloatRegBits(reg_idx, val, tid); } else { reg_idx -= Ctrl_Base_DepTag; setMiscReg(reg_idx, val, tid); // Misc. Register File } } MiscReg InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid) { return isa[tid]->readMiscRegNoEffect(misc_reg); } MiscReg InOrderCPU::readMiscReg(int misc_reg, ThreadID tid) { return isa[tid]->readMiscReg(misc_reg, tcBase(tid)); } void InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid) { isa[tid]->setMiscRegNoEffect(misc_reg, val); } void InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid) { isa[tid]->setMiscReg(misc_reg, val, tcBase(tid)); } InOrderCPU::ListIt InOrderCPU::addInst(DynInstPtr inst) { ThreadID tid = inst->readTid(); instList[tid].push_back(inst); return --(instList[tid].end()); } InOrderCPU::ListIt InOrderCPU::findInst(InstSeqNum seq_num, ThreadID tid) { ListIt it = instList[tid].begin(); ListIt end = instList[tid].end(); while (it != end) { if ((*it)->seqNum == seq_num) return it; else if ((*it)->seqNum > seq_num) break; it++; } return instList[tid].end(); } void InOrderCPU::updateContextSwitchStats() { // Set Average Stat Here, then reset to 0 instsPerCtxtSwitch = instsPerSwitch; instsPerSwitch = 0; } void InOrderCPU::instDone(DynInstPtr inst, ThreadID tid) { // Set the nextPC to be fetched if this is the last instruction // committed // ======== // This contributes to the precise state of the CPU // which can be used when restoring a thread to the CPU after after any // type of context switching activity (fork, exception, etc.) TheISA::PCState comm_pc = inst->pcState(); lastCommittedPC[tid] = comm_pc; TheISA::advancePC(comm_pc, inst->staticInst); pcState(comm_pc, tid); //@todo: may be unnecessary with new-ISA-specific branch handling code if (inst->isControl()) { thread[tid]->lastGradIsBranch = true; thread[tid]->lastBranchPC = inst->pcState(); TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst); } else { thread[tid]->lastGradIsBranch = false; } // Finalize Trace Data For Instruction if (inst->traceData) { //inst->traceData->setCycle(curTick()); inst->traceData->setFetchSeq(inst->seqNum); //inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst); inst->traceData->dump(); delete inst->traceData; inst->traceData = NULL; } // Increment active thread's instruction count instsPerSwitch++; // Increment thread-state's instruction count thread[tid]->numInst++; thread[tid]->numOp++; // Increment thread-state's instruction stats thread[tid]->numInsts++; thread[tid]->numOps++; // Count committed insts per thread stats if (!inst->isMicroop() || inst->isLastMicroop()) { committedInsts[tid]++; // Count total insts committed stat totalCommittedInsts++; } committedOps[tid]++; // Count SMT-committed insts per thread stat if (numActiveThreads() > 1) { if (!inst->isMicroop() || inst->isLastMicroop()) smtCommittedInsts[tid]++; } // Instruction-Mix Stats if (inst->isLoad()) { comLoads++; } else if (inst->isStore()) { comStores++; } else if (inst->isControl()) { comBranches++; } else if (inst->isNop()) { comNops++; } else if (inst->isNonSpeculative()) { comNonSpec++; } else if (inst->isInteger()) { comInts++; } else if (inst->isFloating()) { comFloats++; } // Check for instruction-count-based events. comInstEventQueue[tid]->serviceEvents(thread[tid]->numOp); // Finally, remove instruction from CPU removeInst(inst); } // currently unused function, but substitute repetitive code w/this function // call void InOrderCPU::addToRemoveList(DynInstPtr inst) { removeInstsThisCycle = true; if (!inst->isRemoveList()) { DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s " "[sn:%lli] to remove list\n", inst->threadNumber, inst->pcState(), inst->seqNum); inst->setRemoveList(); removeList.push(inst->getInstListIt()); } else { DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s " "[sn:%lli], already remove list\n", inst->threadNumber, inst->pcState(), inst->seqNum); } } void InOrderCPU::removeInst(DynInstPtr inst) { DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s " "[sn:%lli]\n", inst->threadNumber, inst->pcState(), inst->seqNum); removeInstsThisCycle = true; // Remove the instruction. if (!inst->isRemoveList()) { DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s " "[sn:%lli] to remove list\n", inst->threadNumber, inst->pcState(), inst->seqNum); inst->setRemoveList(); removeList.push(inst->getInstListIt()); } else { DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s " "[sn:%lli], already on remove list\n", inst->threadNumber, inst->pcState(), inst->seqNum); } } void InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid) { //assert(!instList[tid].empty()); removeInstsThisCycle = true; ListIt inst_iter = instList[tid].end(); inst_iter--; DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction " "list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n", tid, seq_num, (*inst_iter)->seqNum); while ((*inst_iter)->seqNum > seq_num) { bool break_loop = (inst_iter == instList[tid].begin()); squashInstIt(inst_iter, tid); inst_iter--; if (break_loop) break; } } inline void InOrderCPU::squashInstIt(const ListIt inst_it, ThreadID tid) { DynInstPtr inst = (*inst_it); if (inst->threadNumber == tid) { DPRINTF(InOrderCPU, "Squashing instruction, " "[tid:%i] [sn:%lli] PC %s\n", inst->threadNumber, inst->seqNum, inst->pcState()); inst->setSquashed(); archRegDepMap[tid].remove(inst); if (!inst->isRemoveList()) { DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s " "[sn:%lli] to remove list\n", inst->threadNumber, inst->pcState(), inst->seqNum); inst->setRemoveList(); removeList.push(inst_it); } else { DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]" " PC %s [sn:%lli], already on remove list\n", inst->threadNumber, inst->pcState(), inst->seqNum); } } } void InOrderCPU::cleanUpRemovedInsts() { while (!removeList.empty()) { DPRINTF(InOrderCPU, "Removing instruction, " "[tid:%i] [sn:%lli] PC %s\n", (*removeList.front())->threadNumber, (*removeList.front())->seqNum, (*removeList.front())->pcState()); DynInstPtr inst = *removeList.front(); ThreadID tid = inst->threadNumber; // Remove From Register Dependency Map, If Necessary // archRegDepMap[tid].remove(inst); // Clear if Non-Speculative if (inst->staticInst && inst->seqNum == nonSpecSeqNum[tid] && nonSpecInstActive[tid] == true) { nonSpecInstActive[tid] = false; } inst->onInstList = false; instList[tid].erase(removeList.front()); removeList.pop(); } removeInstsThisCycle = false; } void InOrderCPU::cleanUpRemovedEvents() { while (!cpuEventRemoveList.empty()) { Event *cpu_event = cpuEventRemoveList.front(); cpuEventRemoveList.pop(); delete cpu_event; } } void InOrderCPU::dumpInsts() { int num = 0; ListIt inst_list_it = instList[0].begin(); cprintf("Dumping Instruction List\n"); while (inst_list_it != instList[0].end()) { cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n" "Squashed:%i\n\n", num, (*inst_list_it)->pcState(), (*inst_list_it)->threadNumber, (*inst_list_it)->seqNum, (*inst_list_it)->isIssued(), (*inst_list_it)->isSquashed()); inst_list_it++; ++num; } } void InOrderCPU::wakeCPU() { if (/*activityRec.active() || */tickEvent.scheduled()) { DPRINTF(Activity, "CPU already running.\n"); return; } DPRINTF(Activity, "Waking up CPU\n"); Tick extra_cycles = curCycle() - lastRunningCycle; if (extra_cycles != 0) --extra_cycles; idleCycles += extra_cycles; for (int stage_num = 0; stage_num < NumStages; stage_num++) { pipelineStage[stage_num]->idleCycles += extra_cycles; } numCycles += extra_cycles; schedule(&tickEvent, nextCycle()); } // Lots of copied full system code...place into BaseCPU class? void InOrderCPU::wakeup() { if (thread[0]->status() != ThreadContext::Suspended) return; wakeCPU(); DPRINTF(Quiesce, "Suspended Processor woken\n"); threadContexts[0]->activate(); } void InOrderCPU::syscallContext(Fault fault, ThreadID tid, DynInstPtr inst, Cycles delay) { // Syscall must be non-speculative, so squash from last stage unsigned squash_stage = NumStages - 1; inst->setSquashInfo(squash_stage); // Squash In Pipeline Stage pipelineStage[squash_stage]->setupSquash(inst, tid); // Schedule Squash Through-out Resource Pool resPool->scheduleEvent( (InOrderCPU::CPUEventType)ResourcePool::SquashAll, inst, Cycles(0)); scheduleCpuEvent(Syscall, fault, tid, inst, delay, Syscall_Pri); } void InOrderCPU::syscall(int64_t callnum, ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid); DPRINTF(Activity,"Activity: syscall() called.\n"); // Temporarily increase this by one to account for the syscall // instruction. ++(this->thread[tid]->funcExeInst); // Execute the actual syscall. this->thread[tid]->syscall(callnum); // Decrease funcExeInst by one as the normal commit will handle // incrementing it. --(this->thread[tid]->funcExeInst); // Clear Non-Speculative Block Variable nonSpecInstActive[tid] = false; } TheISA::TLB* InOrderCPU::getITBPtr() { CacheUnit *itb_res = resPool->getInstUnit(); return itb_res->tlb(); } TheISA::TLB* InOrderCPU::getDTBPtr() { return resPool->getDataUnit()->tlb(); } TheISA::Decoder * InOrderCPU::getDecoderPtr(unsigned tid) { return resPool->getInstUnit()->decoder[tid]; } Fault InOrderCPU::read(DynInstPtr inst, Addr addr, uint8_t *data, unsigned size, unsigned flags) { return resPool->getDataUnit()->read(inst, addr, data, size, flags); } Fault InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *write_res) { return resPool->getDataUnit()->write(inst, data, size, addr, flags, write_res); }