/* * Copyright (c) 2012 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2007 MIPS Technologies, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Korey Sewell * */ #ifndef __CPU_INORDER_CPU_HH__ #define __CPU_INORDER_CPU_HH__ #include #include #include #include #include #include "arch/isa_traits.hh" #include "arch/registers.hh" #include "arch/types.hh" #include "base/statistics.hh" #include "base/types.hh" #include "config/the_isa.hh" #include "cpu/inorder/inorder_dyn_inst.hh" #include "cpu/inorder/pipeline_stage.hh" #include "cpu/inorder/pipeline_traits.hh" #include "cpu/inorder/reg_dep_map.hh" #include "cpu/inorder/thread_state.hh" #include "cpu/o3/dep_graph.hh" #include "cpu/o3/rename_map.hh" #include "cpu/activity.hh" #include "cpu/base.hh" #include "cpu/simple_thread.hh" #include "cpu/timebuf.hh" #include "mem/packet.hh" #include "mem/port.hh" #include "mem/request.hh" #include "sim/eventq.hh" #include "sim/process.hh" class CacheUnit; class ThreadContext; class MemInterface; class MemObject; class Process; class ResourcePool; class InOrderCPU : public BaseCPU { protected: typedef ThePipeline::Params Params; typedef InOrderThreadState Thread; //ISA TypeDefs typedef TheISA::IntReg IntReg; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::MiscReg MiscReg; typedef TheISA::RegIndex RegIndex; //DynInstPtr TypeDefs typedef ThePipeline::DynInstPtr DynInstPtr; typedef std::list::iterator ListIt; //TimeBuffer TypeDefs typedef TimeBuffer StageQueue; friend class Resource; public: /** Constructs a CPU with the given parameters. */ InOrderCPU(Params *params); /* Destructor */ ~InOrderCPU(); /** Return a reference to the data port. */ virtual CpuPort &getDataPort() { return dataPort; } /** Return a reference to the instruction port. */ virtual CpuPort &getInstPort() { return instPort; } /** CPU ID */ int cpu_id; // SE Mode ASIDs ThreadID asid[ThePipeline::MaxThreads]; /** Type of core that this is */ std::string coreType; // Only need for SE MODE enum ThreadModel { Single, SMT, SwitchOnCacheMiss }; ThreadModel threadModel; int readCpuId() { return cpu_id; } void setCpuId(int val) { cpu_id = val; } Params *cpu_params; public: enum Status { Running, Idle, Halted, Blocked, SwitchedOut }; /** Overall CPU status. */ Status _status; private: /** * CachePort class for the in-order CPU, interacting with a * specific CacheUnit in the pipeline. */ class CachePort : public CpuPort { private: /** Pointer to cache unit */ CacheUnit *cacheUnit; public: /** Default constructor. */ CachePort(CacheUnit *_cacheUnit, const std::string& name); protected: /** Timing version of receive */ bool recvTimingResp(PacketPtr pkt); /** Handles doing a retry of a failed timing request. */ void recvRetry(); /** Ignoring snoops for now. */ void recvTimingSnoopReq(PacketPtr pkt) { } }; /** Define TickEvent for the CPU */ class TickEvent : public Event { private: /** Pointer to the CPU. */ InOrderCPU *cpu; public: /** Constructs a tick event. */ TickEvent(InOrderCPU *c); /** Processes a tick event, calling tick() on the CPU. */ void process(); /** Returns the description of the tick event. */ const char *description() const; }; /** The tick event used for scheduling CPU ticks. */ TickEvent tickEvent; /** Schedule tick event, regardless of its current state. */ void scheduleTickEvent(Cycles delay) { assert(!tickEvent.scheduled() || tickEvent.squashed()); reschedule(&tickEvent, clockEdge(delay), true); } /** Unschedule tick event, regardless of its current state. */ void unscheduleTickEvent() { if (tickEvent.scheduled()) tickEvent.squash(); } public: // List of Events That can be scheduled from // within the CPU. // NOTE(1): The Resource Pool also uses this event list // to schedule events broadcast to all resources interfaces // NOTE(2): CPU Events usually need to schedule a corresponding resource // pool event. enum CPUEventType { ActivateThread, ActivateNextReadyThread, DeactivateThread, HaltThread, SuspendThread, Trap, Syscall, SquashFromMemStall, UpdatePCs, NumCPUEvents }; static std::string eventNames[NumCPUEvents]; enum CPUEventPri { InOrderCPU_Pri = Event::CPU_Tick_Pri, Syscall_Pri = Event::CPU_Tick_Pri + 9, ActivateNextReadyThread_Pri = Event::CPU_Tick_Pri + 10 }; /** Define CPU Event */ class CPUEvent : public Event { protected: InOrderCPU *cpu; public: CPUEventType cpuEventType; ThreadID tid; DynInstPtr inst; Fault fault; unsigned vpe; short syscall_num; public: /** Constructs a CPU event. */ CPUEvent(InOrderCPU *_cpu, CPUEventType e_type, Fault fault, ThreadID _tid, DynInstPtr inst, CPUEventPri event_pri); /** Set Type of Event To Be Scheduled */ void setEvent(CPUEventType e_type, Fault _fault, ThreadID _tid, DynInstPtr _inst) { fault = _fault; cpuEventType = e_type; tid = _tid; inst = _inst; vpe = 0; } /** Processes a CPU event. */ void process(); /** Returns the description of the CPU event. */ const char *description() const; /** Schedule Event */ void scheduleEvent(Cycles delay); /** Unschedule This Event */ void unscheduleEvent(); }; /** Schedule a CPU Event */ void scheduleCpuEvent(CPUEventType cpu_event, Fault fault, ThreadID tid, DynInstPtr inst, Cycles delay = Cycles(0), CPUEventPri event_pri = InOrderCPU_Pri); public: /** Width (processing bandwidth) of each stage */ int stageWidth; /** Interface between the CPU and CPU resources. */ ResourcePool *resPool; /** Instruction used to signify that there is no *real* instruction in buffer slot */ DynInstPtr dummyInst[ThePipeline::MaxThreads]; DynInstPtr dummyBufferInst; DynInstPtr dummyReqInst; DynInstPtr dummyTrapInst[ThePipeline::MaxThreads]; /** Used by resources to signify a denied access to a resource. */ ResourceRequest *dummyReq[ThePipeline::MaxThreads]; /** The Pipeline Stages for the CPU */ PipelineStage *pipelineStage[ThePipeline::NumStages]; /** Program Counters */ TheISA::PCState pc[ThePipeline::MaxThreads]; /** Last Committed PC */ TheISA::PCState lastCommittedPC[ThePipeline::MaxThreads]; /** The Register File for the CPU */ union { FloatReg f[ThePipeline::MaxThreads][TheISA::NumFloatRegs]; FloatRegBits i[ThePipeline::MaxThreads][TheISA::NumFloatRegs]; } floatRegs; TheISA::IntReg intRegs[ThePipeline::MaxThreads][TheISA::NumIntRegs]; /** ISA state */ std::vector isa; /** Dependency Tracker for Integer & Floating Point Regs */ RegDepMap archRegDepMap[ThePipeline::MaxThreads]; /** Register Types Used in Dependency Tracking */ enum RegType { IntType, FloatType, MiscType, NumRegTypes}; /** Global communication structure */ TimeBuffer timeBuffer; /** Communication structure that sits in between pipeline stages */ StageQueue *stageQueue[ThePipeline::NumStages-1]; TheISA::TLB *getITBPtr(); TheISA::TLB *getDTBPtr(); TheISA::Decoder *getDecoderPtr(unsigned tid); /** Accessor Type for the SkedCache */ typedef uint32_t SkedID; /** Cache of Instruction Schedule using the instruction's name as a key */ static m5::hash_map skedCache; typedef m5::hash_map::iterator SkedCacheIt; /** Initialized to last iterator in map, signifying a invalid entry on map searches */ SkedCacheIt endOfSkedIt; ThePipeline::RSkedPtr frontEndSked; ThePipeline::RSkedPtr faultSked; /** Add a new instruction schedule to the schedule cache */ void addToSkedCache(DynInstPtr inst, ThePipeline::RSkedPtr inst_sked) { SkedID sked_id = genSkedID(inst); assert(skedCache.find(sked_id) == skedCache.end()); skedCache[sked_id] = inst_sked; } /** Find a instruction schedule */ ThePipeline::RSkedPtr lookupSked(DynInstPtr inst) { SkedID sked_id = genSkedID(inst); SkedCacheIt lookup_it = skedCache.find(sked_id); if (lookup_it != endOfSkedIt) { return (*lookup_it).second; } else { return NULL; } } static const uint8_t INST_OPCLASS = 26; static const uint8_t INST_LOAD = 25; static const uint8_t INST_STORE = 24; static const uint8_t INST_CONTROL = 23; static const uint8_t INST_NONSPEC = 22; static const uint8_t INST_DEST_REGS = 18; static const uint8_t INST_SRC_REGS = 14; static const uint8_t INST_SPLIT_DATA = 13; inline SkedID genSkedID(DynInstPtr inst) { SkedID id = 0; id = (inst->opClass() << INST_OPCLASS) | (inst->isLoad() << INST_LOAD) | (inst->isStore() << INST_STORE) | (inst->isControl() << INST_CONTROL) | (inst->isNonSpeculative() << INST_NONSPEC) | (inst->numDestRegs() << INST_DEST_REGS) | (inst->numSrcRegs() << INST_SRC_REGS) | (inst->splitInst << INST_SPLIT_DATA); return id; } ThePipeline::RSkedPtr createFrontEndSked(); ThePipeline::RSkedPtr createFaultSked(); ThePipeline::RSkedPtr createBackEndSked(DynInstPtr inst); class StageScheduler { private: ThePipeline::RSkedPtr rsked; int stageNum; int nextTaskPriority; public: StageScheduler(ThePipeline::RSkedPtr _rsked, int stage_num) : rsked(_rsked), stageNum(stage_num), nextTaskPriority(0) { } void needs(int unit, int request) { rsked->push(new ScheduleEntry( stageNum, nextTaskPriority++, unit, request )); } void needs(int unit, int request, int param) { rsked->push(new ScheduleEntry( stageNum, nextTaskPriority++, unit, request, param )); } }; private: /** Data port. Note that it has to appear after the resPool. */ CachePort dataPort; /** Instruction port. Note that it has to appear after the resPool. */ CachePort instPort; public: /** Registers statistics. */ void regStats(); /** Ticks CPU, calling tick() on each stage, and checking the overall * activity to see if the CPU should deschedule itself. */ void tick(); /** Initialize the CPU */ void init(); /** HW return from error interrupt. */ Fault hwrei(ThreadID tid); bool simPalCheck(int palFunc, ThreadID tid); void checkForInterrupts(); /** Returns the Fault for any valid interrupt. */ Fault getInterrupts(); /** Processes any an interrupt fault. */ void processInterrupts(Fault interrupt); /** Halts the CPU. */ void halt() { panic("Halt not implemented!\n"); } /** Check if this address is a valid instruction address. */ bool validInstAddr(Addr addr) { return true; } /** Check if this address is a valid data address. */ bool validDataAddr(Addr addr) { return true; } /** Schedule a syscall on the CPU */ void syscallContext(Fault fault, ThreadID tid, DynInstPtr inst, Cycles delay = Cycles(0)); /** Executes a syscall.*/ void syscall(int64_t callnum, ThreadID tid); /** Schedule a trap on the CPU */ void trapContext(Fault fault, ThreadID tid, DynInstPtr inst, Cycles delay = Cycles(0)); /** Perform trap to Handle Given Fault */ void trap(Fault fault, ThreadID tid, DynInstPtr inst); /** Schedule thread activation on the CPU */ void activateContext(ThreadID tid, Cycles delay = Cycles(0)); /** Add Thread to Active Threads List. */ void activateThread(ThreadID tid); /** Activate Thread In Each Pipeline Stage */ void activateThreadInPipeline(ThreadID tid); /** Schedule Thread Activation from Ready List */ void activateNextReadyContext(Cycles delay = Cycles(0)); /** Add Thread From Ready List to Active Threads List. */ void activateNextReadyThread(); /** Schedule a thread deactivation on the CPU */ void deactivateContext(ThreadID tid, Cycles delay = Cycles(0)); /** Remove from Active Thread List */ void deactivateThread(ThreadID tid); /** Schedule a thread suspension on the CPU */ void suspendContext(ThreadID tid); /** Suspend Thread, Remove from Active Threads List, Add to Suspend List */ void suspendThread(ThreadID tid); /** Schedule a thread halt on the CPU */ void haltContext(ThreadID tid); /** Halt Thread, Remove from Active Thread List, Place Thread on Halted * Threads List */ void haltThread(ThreadID tid); /** squashFromMemStall() - sets up a squash event * squashDueToMemStall() - squashes pipeline * @note: maybe squashContext/squashThread would be better? */ void squashFromMemStall(DynInstPtr inst, ThreadID tid, Cycles delay = Cycles(0)); void squashDueToMemStall(int stage_num, InstSeqNum seq_num, ThreadID tid); void removePipelineStalls(ThreadID tid); void squashThreadInPipeline(ThreadID tid); void squashBehindMemStall(int stage_num, InstSeqNum seq_num, ThreadID tid); PipelineStage* getPipeStage(int stage_num); int contextId() { hack_once("return a bogus context id"); return 0; } /** Update The Order In Which We Process Threads. */ void updateThreadPriority(); /** Switches a Pipeline Stage to Active. (Unused currently) */ void switchToActive(int stage_idx) { /*pipelineStage[stage_idx]->switchToActive();*/ } /** Get the current instruction sequence number, and increment it. */ InstSeqNum getAndIncrementInstSeq(ThreadID tid) { return globalSeqNum[tid]++; } /** Get the current instruction sequence number, and increment it. */ InstSeqNum nextInstSeqNum(ThreadID tid) { return globalSeqNum[tid]; } /** Increment Instruction Sequence Number */ void incrInstSeqNum(ThreadID tid) { globalSeqNum[tid]++; } /** Set Instruction Sequence Number */ void setInstSeqNum(ThreadID tid, InstSeqNum seq_num) { globalSeqNum[tid] = seq_num; } /** Get & Update Next Event Number */ InstSeqNum getNextEventNum() { #ifdef DEBUG return cpuEventNum++; #else return 0; #endif } /** Register file accessors */ uint64_t readIntReg(RegIndex reg_idx, ThreadID tid); FloatReg readFloatReg(RegIndex reg_idx, ThreadID tid); FloatRegBits readFloatRegBits(RegIndex reg_idx, ThreadID tid); void setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid); void setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid); void setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid); RegType inline getRegType(RegIndex reg_idx) { if (reg_idx < TheISA::FP_Base_DepTag) return IntType; else if (reg_idx < TheISA::Ctrl_Base_DepTag) return FloatType; else return MiscType; } RegIndex flattenRegIdx(RegIndex reg_idx, RegType ®_type, ThreadID tid); /** Reads a miscellaneous register. */ MiscReg readMiscRegNoEffect(int misc_reg, ThreadID tid = 0); /** Reads a misc. register, including any side effects the read * might have as defined by the architecture. */ MiscReg readMiscReg(int misc_reg, ThreadID tid = 0); /** Sets a miscellaneous register. */ void setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0); /** Sets a misc. register, including any side effects the write * might have as defined by the architecture. */ void setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0); /** Reads a int/fp/misc reg. from another thread depending on ISA-defined * target thread */ uint64_t readRegOtherThread(unsigned misc_reg, ThreadID tid = InvalidThreadID); /** Sets a int/fp/misc reg. from another thread depending on an ISA-defined * target thread */ void setRegOtherThread(unsigned misc_reg, const MiscReg &val, ThreadID tid); /** Reads the commit PC of a specific thread. */ TheISA::PCState pcState(ThreadID tid) { return pc[tid]; } /** Sets the commit PC of a specific thread. */ void pcState(const TheISA::PCState &newPC, ThreadID tid) { pc[tid] = newPC; } Addr instAddr(ThreadID tid) { return pc[tid].instAddr(); } Addr nextInstAddr(ThreadID tid) { return pc[tid].nextInstAddr(); } MicroPC microPC(ThreadID tid) { return pc[tid].microPC(); } /** Function to add instruction onto the head of the list of the * instructions. Used when new instructions are fetched. */ ListIt addInst(DynInstPtr inst); /** Find instruction on instruction list */ ListIt findInst(InstSeqNum seq_num, ThreadID tid); /** Function to tell the CPU that an instruction has completed. */ void instDone(DynInstPtr inst, ThreadID tid); /** Add Instructions to the CPU Remove List*/ void addToRemoveList(DynInstPtr inst); /** Remove an instruction from CPU */ void removeInst(DynInstPtr inst); /** Remove all instructions younger than the given sequence number. */ void removeInstsUntil(const InstSeqNum &seq_num,ThreadID tid); /** Removes the instruction pointed to by the iterator. */ inline void squashInstIt(const ListIt inst_it, ThreadID tid); /** Cleans up all instructions on the instruction remove list. */ void cleanUpRemovedInsts(); /** Cleans up all events on the CPU event remove list. */ void cleanUpRemovedEvents(); /** Debug function to print all instructions on the list. */ void dumpInsts(); /** Forwards an instruction read to the appropriate data * resource (indexes into Resource Pool thru "dataPortIdx") */ Fault read(DynInstPtr inst, Addr addr, uint8_t *data, unsigned size, unsigned flags); /** Forwards an instruction write. to the appropriate data * resource (indexes into Resource Pool thru "dataPortIdx") */ Fault write(DynInstPtr inst, uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *write_res = NULL); public: /** Per-Thread List of all the instructions in flight. */ std::list instList[ThePipeline::MaxThreads]; /** List of all the instructions that will be removed at the end of this * cycle. */ std::queue removeList; bool trapPending[ThePipeline::MaxThreads]; /** List of all the cpu event requests that will be removed at the end of * the current cycle. */ std::queue cpuEventRemoveList; /** Records if instructions need to be removed this cycle due to * being retired or squashed. */ bool removeInstsThisCycle; /** True if there is non-speculative Inst Active In Pipeline. Lets any * execution unit know, NOT to execute while the instruction is active. */ bool nonSpecInstActive[ThePipeline::MaxThreads]; /** Instruction Seq. Num of current non-speculative instruction. */ InstSeqNum nonSpecSeqNum[ThePipeline::MaxThreads]; /** Instruction Seq. Num of last instruction squashed in pipeline */ InstSeqNum squashSeqNum[ThePipeline::MaxThreads]; /** Last Cycle that the CPU squashed instruction end. */ Tick lastSquashCycle[ThePipeline::MaxThreads]; std::list fetchPriorityList; protected: /** Active Threads List */ std::list activeThreads; /** Ready Threads List */ std::list readyThreads; /** Suspended Threads List */ std::list suspendedThreads; /** Halted Threads List */ std::list haltedThreads; /** Thread Status Functions */ bool isThreadActive(ThreadID tid); bool isThreadReady(ThreadID tid); bool isThreadSuspended(ThreadID tid); private: /** The activity recorder; used to tell if the CPU has any * activity remaining or if it can go to idle and deschedule * itself. */ ActivityRecorder activityRec; public: /** Number of Active Threads in the CPU */ ThreadID numActiveThreads() { return activeThreads.size(); } /** Thread id of active thread * Only used for SwitchOnCacheMiss model. * Assumes only 1 thread active */ ThreadID activeThreadId() { if (numActiveThreads() > 0) return activeThreads.front(); else return InvalidThreadID; } /** Records that there was time buffer activity this cycle. */ void activityThisCycle() { activityRec.activity(); } /** Changes a stage's status to active within the activity recorder. */ void activateStage(const int idx) { activityRec.activateStage(idx); } /** Changes a stage's status to inactive within the activity recorder. */ void deactivateStage(const int idx) { activityRec.deactivateStage(idx); } /** Wakes the CPU, rescheduling the CPU if it's not already active. */ void wakeCPU(); virtual void wakeup(); /* LL/SC debug functionality unsigned stCondFails; unsigned readStCondFailures() { return stCondFails; } unsigned setStCondFailures(unsigned st_fails) { return stCondFails = st_fails; } */ /** Returns a pointer to a thread context. */ ThreadContext *tcBase(ThreadID tid = 0) { return thread[tid]->getTC(); } /** Count the Total Instructions Committed in the CPU. */ virtual Counter totalInsts() const { Counter total(0); for (ThreadID tid = 0; tid < (ThreadID)thread.size(); tid++) total += thread[tid]->numInst; return total; } /** Count the Total Ops Committed in the CPU. */ virtual Counter totalOps() const { Counter total(0); for (ThreadID tid = 0; tid < (ThreadID)thread.size(); tid++) total += thread[tid]->numOp; return total; } /** Pointer to the system. */ System *system; /** The global sequence number counter. */ InstSeqNum globalSeqNum[ThePipeline::MaxThreads]; #ifdef DEBUG /** The global event number counter. */ InstSeqNum cpuEventNum; /** Number of resource requests active in CPU **/ unsigned resReqCount; #endif Addr lockAddr; /** Temporary fix for the lock flag, works in the UP case. */ bool lockFlag; /** Counter of how many stages have completed draining */ int drainCount; /** Pointers to all of the threads in the CPU. */ std::vector thread; /** Whether or not the CPU should defer its registration. */ bool deferRegistration; /** Per-Stage Instruction Tracing */ bool stageTracing; /** The cycle that the CPU was last running, used for statistics. */ Tick lastRunningCycle; void updateContextSwitchStats(); unsigned instsPerSwitch; Stats::Average instsPerCtxtSwitch; Stats::Scalar numCtxtSwitches; /** Update Thread , used for statistic purposes*/ inline void tickThreadStats(); /** Per-Thread Tick */ Stats::Vector threadCycles; /** Tick for SMT */ Stats::Scalar smtCycles; /** Stat for total number of times the CPU is descheduled. */ Stats::Scalar timesIdled; /** Stat for total number of cycles the CPU spends descheduled or no * stages active. */ Stats::Scalar idleCycles; /** Stat for total number of cycles the CPU is active. */ Stats::Scalar runCycles; /** Percentage of cycles a stage was active */ Stats::Formula activity; /** Instruction Mix Stats */ Stats::Scalar comLoads; Stats::Scalar comStores; Stats::Scalar comBranches; Stats::Scalar comNops; Stats::Scalar comNonSpec; Stats::Scalar comInts; Stats::Scalar comFloats; /** Stat for the number of committed instructions per thread. */ Stats::Vector committedInsts; /** Stat for the number of committed ops per thread. */ Stats::Vector committedOps; /** Stat for the number of committed instructions per thread. */ Stats::Vector smtCommittedInsts; /** Stat for the total number of committed instructions. */ Stats::Scalar totalCommittedInsts; /** Stat for the CPI per thread. */ Stats::Formula cpi; /** Stat for the SMT-CPI per thread. */ Stats::Formula smtCpi; /** Stat for the total CPI. */ Stats::Formula totalCpi; /** Stat for the IPC per thread. */ Stats::Formula ipc; /** Stat for the total IPC. */ Stats::Formula smtIpc; /** Stat for the total IPC. */ Stats::Formula totalIpc; }; #endif // __CPU_O3_CPU_HH__