/* * Copyright (c) 2007 MIPS Technologies, Inc. * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim * Korey Sewell */ #ifndef __CPU_INORDER_DYN_INST_HH__ #define __CPU_INORDER_DYN_INST_HH__ #include #include #include #include "arch/isa_traits.hh" #include "arch/mt.hh" #include "arch/types.hh" #include "arch/utility.hh" #include "base/fast_alloc.hh" #include "base/trace.hh" #include "base/types.hh" #include "config/the_isa.hh" #include "cpu/inorder/inorder_trace.hh" #include "cpu/inorder/pipeline_traits.hh" #include "cpu/inorder/resource.hh" #include "cpu/inorder/resource_sked.hh" #include "cpu/inorder/thread_state.hh" #include "cpu/exetrace.hh" #include "cpu/inst_seq.hh" #include "cpu/op_class.hh" #include "cpu/static_inst.hh" #include "cpu/thread_context.hh" #include "debug/InOrderDynInst.hh" #include "mem/packet.hh" #include "sim/fault_fwd.hh" #include "sim/system.hh" #if THE_ISA == ALPHA_ISA #include "arch/alpha/ev5.hh" #endif /** * @file * Defines a dynamic instruction context for a inorder CPU model. */ // Forward declaration. class ResourceRequest; class Packet; class InOrderDynInst : public FastAlloc, public RefCounted { public: // Binary machine instruction type. typedef TheISA::MachInst MachInst; // Extended machine instruction type typedef TheISA::ExtMachInst ExtMachInst; // Logical register index type. typedef TheISA::RegIndex RegIndex; // Integer register type. typedef TheISA::IntReg IntReg; // Floating point register type. typedef TheISA::FloatReg FloatReg; // Floating point register type. typedef TheISA::FloatRegBits FloatRegBits; // Floating point register type. typedef TheISA::MiscReg MiscReg; typedef short int PhysRegIndex; /** The refcounted DynInst pointer to be used. In most cases this is * what should be used, and not DynInst*. */ typedef RefCountingPtr DynInstPtr; // The list of instructions iterator type. typedef std::list::iterator ListIt; enum { MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs }; public: /** BaseDynInst constructor given a binary instruction. * @param seq_num The sequence number of the instruction. * @param cpu Pointer to the instruction's CPU. * NOTE: Must set Binary Instrution through Member Function */ InOrderDynInst(InOrderCPU *cpu, InOrderThreadState *state, InstSeqNum seq_num, ThreadID tid, unsigned asid = 0); /** InOrderDynInst destructor. */ ~InOrderDynInst(); public: /** The sequence number of the instruction. */ InstSeqNum seqNum; /** If this instruction is squashing, the number should we squash behind. */ InstSeqNum squashSeqNum; enum Status { RegDepMapEntry, /// Instruction is entered onto the RegDepMap IqEntry, /// Instruction is in the IQ RobEntry, /// Instruction is in the ROB LsqEntry, /// Instruction is in the LSQ Completed, /// Instruction has completed ResultReady, /// Instruction has its result CanIssue, /// Instruction can issue and execute Issued, /// Instruction has issued Executed, /// Instruction has executed CanCommit, /// Instruction can commit AtCommit, /// Instruction has reached commit Committed, /// Instruction has committed Squashed, /// Instruction is squashed SquashedInIQ, /// Instruction is squashed in the IQ SquashedInLSQ, /// Instruction is squashed in the LSQ SquashedInROB, /// Instruction is squashed in the ROB RecoverInst, /// Is a recover instruction BlockingInst, /// Is a blocking instruction ThreadsyncWait, /// Is a thread synchronization instruction SerializeBefore, /// Needs to serialize on /// instructions ahead of it SerializeAfter, /// Needs to serialize instructions behind it SerializeHandled, /// Serialization has been handled RemoveList, /// Is Instruction on Remove List? NumStatus }; /** The status of this BaseDynInst. Several bits can be set. */ std::bitset status; /** The thread this instruction is from. */ short threadNumber; /** data address space ID, for loads & stores. */ short asid; /** The virtual processor number */ short virtProcNumber; /** The StaticInst used by this BaseDynInst. */ StaticInstPtr staticInst; /** InstRecord that tracks this instructions. */ Trace::InOrderTraceRecord *traceData; /** Pointer to the Impl's CPU object. */ InOrderCPU *cpu; /** Pointer to the thread state. */ InOrderThreadState *thread; /** The kind of fault this instruction has generated. */ Fault fault; /** The memory request. */ Request *req; /** Pointer to the data for the memory access. */ uint8_t *memData; /** Data used for a store for operation. */ uint64_t loadData; /** Data used for a store for operation. */ uint64_t storeData; /** List of active resource requests for this instruction */ std::list reqList; /** The effective virtual address (lds & stores only). */ Addr effAddr; /** The effective physical address. */ Addr physEffAddr; /** The memory request flags (from translation). */ unsigned memReqFlags; /** How many source registers are ready. */ unsigned readyRegs; enum ResultType { None, Integer, Float, FloatBits, Double }; /** An instruction src/dest has to be one of these types */ struct InstValue { IntReg intVal; union { FloatReg f; FloatRegBits i; } fpVal; InstValue() { intVal = 0; fpVal.i = 0; } }; /** Result of an instruction execution */ struct InstResult { ResultType type; InstValue res; Tick tick; InstResult() : type(None), tick(0) { } }; /** The source of the instruction; assumes for now that there's only one * destination register. */ InstValue instSrc[MaxInstSrcRegs]; /** The result of the instruction; assumes for now that there's only one * destination register. */ InstResult instResult[MaxInstDestRegs]; /** PC of this instruction. */ TheISA::PCState pc; /** Predicted next PC. */ TheISA::PCState predPC; /** Address to get/write data from/to */ /* Fetching address when inst. starts, Data address for load/store after fetch*/ Addr memAddr; /** Whether or not the source register is ready. * @todo: Not sure this should be here vs the derived class. */ bool _readySrcRegIdx[MaxInstSrcRegs]; /** Flattened register index of the destination registers of this * instruction. */ TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs]; /** Flattened register index of the source registers of this * instruction. */ TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs]; /** Physical register index of the destination registers of this * instruction. */ PhysRegIndex _destRegIdx[MaxInstDestRegs]; /** Physical register index of the source registers of this * instruction. */ PhysRegIndex _srcRegIdx[MaxInstSrcRegs]; /** Physical register index of the previous producers of the * architected destinations. */ PhysRegIndex _prevDestRegIdx[MaxInstDestRegs]; int nextStage; private: /** Function to initialize variables in the constructors. */ void initVars(); public: Tick memTime; PacketDataPtr splitMemData; RequestPtr splitMemReq; int totalSize; int split2ndSize; Addr split2ndAddr; bool split2ndAccess; uint8_t split2ndData; PacketDataPtr split2ndDataPtr; unsigned split2ndFlags; bool splitInst; int splitFinishCnt; uint64_t *split2ndStoreDataPtr; bool splitInstSked; //////////////////////////////////////////////////////////// // // BASE INSTRUCTION INFORMATION. // //////////////////////////////////////////////////////////// std::string instName() { return (staticInst) ? staticInst->getName() : "undecoded-inst"; } void setStaticInst(StaticInstPtr si); ExtMachInst getMachInst() { return staticInst->machInst; } /** Sets the StaticInst. */ void setStaticInst(StaticInstPtr &static_inst); /** Sets the sequence number. */ void setSeqNum(InstSeqNum seq_num) { seqNum = seq_num; } /** Sets the ASID. */ void setASID(short addr_space_id) { asid = addr_space_id; } /** Reads the thread id. */ short readTid() { return threadNumber; } /** Sets the thread id. */ void setTid(ThreadID tid) { threadNumber = tid; } void setVpn(int id) { virtProcNumber = id; } int readVpn() { return virtProcNumber; } /** Sets the pointer to the thread state. */ void setThreadState(InOrderThreadState *state) { thread = state; } /** Returns the thread context. */ ThreadContext *tcBase() { return thread->getTC(); } /** Returns the fault type. */ Fault getFault() { return fault; } /** Read this CPU's ID. */ int cpuId(); /** Read this context's system-wide ID **/ int contextId() { return thread->contextId(); } //////////////////////////////////////////////////////////// // // INSTRUCTION TYPES - Forward checks to StaticInst object. // //////////////////////////////////////////////////////////// bool isNop() const { return staticInst->isNop(); } bool isMemRef() const { return staticInst->isMemRef(); } bool isLoad() const { return staticInst->isLoad(); } bool isStore() const { return staticInst->isStore(); } bool isStoreConditional() const { return staticInst->isStoreConditional(); } bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } bool isInteger() const { return staticInst->isInteger(); } bool isFloating() const { return staticInst->isFloating(); } bool isControl() const { return staticInst->isControl(); } bool isCall() const { return staticInst->isCall(); } bool isReturn() const { return staticInst->isReturn(); } bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } bool isCondCtrl() const { return staticInst->isCondCtrl(); } bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); } bool isThreadSync() const { return staticInst->isThreadSync(); } bool isSerializing() const { return staticInst->isSerializing(); } bool isSerializeBefore() const { return staticInst->isSerializeBefore() || status[SerializeBefore]; } bool isSerializeAfter() const { return staticInst->isSerializeAfter() || status[SerializeAfter]; } bool isMemBarrier() const { return staticInst->isMemBarrier(); } bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } bool isQuiesce() const { return staticInst->isQuiesce(); } bool isIprAccess() const { return staticInst->isIprAccess(); } bool isUnverifiable() const { return staticInst->isUnverifiable(); } bool isSyscall() const { return staticInst->isSyscall(); } ///////////////////////////////////////////// // // RESOURCE SCHEDULING // ///////////////////////////////////////////// typedef ThePipeline::RSkedPtr RSkedPtr; bool inFrontEnd; RSkedPtr frontSked; RSkedIt frontSked_end; RSkedPtr backSked; RSkedIt backSked_end; RSkedIt curSkedEntry; void setFrontSked(RSkedPtr front_sked) { frontSked = front_sked; frontSked_end.init(frontSked); frontSked_end = frontSked->end(); //DPRINTF(InOrderDynInst, "Set FrontSked End to : %x \n" , // frontSked_end.getIt()/*, frontSked->end()*/); //assert(frontSked_end == frontSked->end()); // This initializes instruction to be able // to walk the resource schedule curSkedEntry.init(frontSked); curSkedEntry = frontSked->begin(); } void setBackSked(RSkedPtr back_sked) { backSked = back_sked; backSked_end.init(backSked); backSked_end = backSked->end(); } void setNextStage(int stage_num) { nextStage = stage_num; } int getNextStage() { return nextStage; } /** Print Resource Schedule */ void printSked() { if (frontSked != NULL) { frontSked->print(); } if (backSked != NULL) { backSked->print(); } } /** Return Next Resource Stage To Be Used */ int nextResStage() { assert((inFrontEnd && curSkedEntry != frontSked_end) || (!inFrontEnd && curSkedEntry != backSked_end)); return curSkedEntry->stageNum; } /** Return Next Resource To Be Used */ int nextResource() { assert((inFrontEnd && curSkedEntry != frontSked_end) || (!inFrontEnd && curSkedEntry != backSked_end)); return curSkedEntry->resNum; } /** Finish using a schedule entry, increment to next entry */ bool finishSkedEntry() { curSkedEntry++; if (inFrontEnd && curSkedEntry == frontSked_end) { DPRINTF(InOrderDynInst, "[sn:%i] Switching to " "back end schedule.\n", seqNum); assert(backSked != NULL); curSkedEntry.init(backSked); curSkedEntry = backSked->begin(); inFrontEnd = false; } else if (!inFrontEnd && curSkedEntry == backSked_end) { return true; } DPRINTF(InOrderDynInst, "[sn:%i] Next Stage: %i " "Next Resource: %i.\n", seqNum, curSkedEntry->stageNum, curSkedEntry->resNum); return false; } /** Release a Resource Request (Currently Unused) */ void releaseReq(ResourceRequest* req); //////////////////////////////////////////// // // INSTRUCTION EXECUTION // //////////////////////////////////////////// /** Returns the opclass of this instruction. */ OpClass opClass() const { return staticInst->opClass(); } /** Executes the instruction.*/ Fault execute(); unsigned curResSlot; unsigned getCurResSlot() { return curResSlot; } void setCurResSlot(unsigned slot_num) { curResSlot = slot_num; } /** Calls a syscall. */ /** Calls hardware return from error interrupt. */ Fault hwrei(); /** Traps to handle specified fault. */ void trap(Fault fault); bool simPalCheck(int palFunc); short syscallNum; /** Emulates a syscall. */ void syscall(int64_t callnum); //////////////////////////////////////////////////////////// // // MULTITHREADING INTERFACE TO CPU MODELS // //////////////////////////////////////////////////////////// virtual void deallocateContext(int thread_num); //////////////////////////////////////////////////////////// // // PROGRAM COUNTERS - PC/NPC/NPC // //////////////////////////////////////////////////////////// /** Read the PC of this instruction. */ const TheISA::PCState &pcState() const { return pc; } /** Sets the PC of this instruction. */ void pcState(const TheISA::PCState &_pc) { pc = _pc; } const Addr instAddr() { return pc.instAddr(); } const Addr nextInstAddr() { return pc.nextInstAddr(); } const MicroPC microPC() { return pc.microPC(); } //////////////////////////////////////////////////////////// // // BRANCH PREDICTION // //////////////////////////////////////////////////////////// /** Set the predicted target of this current instruction. */ void setPredTarg(const TheISA::PCState &predictedPC) { predPC = predictedPC; } /** Returns the predicted target of the branch. */ TheISA::PCState readPredTarg() { return predPC; } /** Returns the predicted PC immediately after the branch. */ Addr predInstAddr() { return predPC.instAddr(); } /** Returns the predicted PC two instructions after the branch */ Addr predNextInstAddr() { return predPC.nextInstAddr(); } /** Returns the predicted micro PC after the branch */ Addr readPredMicroPC() { return predPC.microPC(); } /** Returns whether the instruction was predicted taken or not. */ bool predTaken() { return predictTaken; } /** Returns whether the instruction mispredicted. */ bool mispredicted() { TheISA::PCState nextPC = pc; TheISA::advancePC(nextPC, staticInst); return !(nextPC == predPC); } /** Returns the branch target address. */ TheISA::PCState branchTarget() const { return staticInst->branchTarget(pc); } /** Checks whether or not this instruction has had its branch target * calculated yet. For now it is not utilized and is hacked to be * always false. * @todo: Actually use this instruction. */ bool doneTargCalc() { return false; } void setBranchPred(bool prediction) { predictTaken = prediction; } int squashingStage; bool predictTaken; bool procDelaySlotOnMispred; void setSquashInfo(unsigned stage_num); //////////////////////////////////////////// // // MEMORY ACCESS // //////////////////////////////////////////// Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags); Fault writeMem(uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *res); /** Initiates a memory access - Calculate Eff. Addr & Initiate Memory * Access Only valid for memory operations. */ Fault initiateAcc(); /** Completes a memory access - Only valid for memory operations. */ Fault completeAcc(Packet *pkt); /** Calculates Eff. Addr. part of a memory instruction. */ Fault calcEA(); /** Read Effective Address from instruction & do memory access */ Fault memAccess(); RequestPtr fetchMemReq; RequestPtr dataMemReq; bool memAddrReady; bool validMemAddr() { return memAddrReady; } void setMemAddr(Addr addr) { memAddr = addr; memAddrReady = true;} void unsetMemAddr() { memAddrReady = false;} Addr getMemAddr() { return memAddr; } /** Sets the effective address. */ void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; } /** Returns the effective address. */ const Addr &getEA() const { return instEffAddr; } /** Returns whether or not the eff. addr. calculation has been completed.*/ bool doneEACalc() { return eaCalcDone; } /** Returns whether or not the eff. addr. source registers are ready. * Assume that src registers 1..n-1 are the ones that the * EA calc depends on. (i.e. src reg 0 is the source of the data to be * stored) */ bool eaSrcsReady() { for (int i = 1; i < numSrcRegs(); ++i) { if (!_readySrcRegIdx[i]) return false; } return true; } ////////////////////////////////////////////////// // // SOURCE-DESTINATION REGISTER INDEXING // ////////////////////////////////////////////////// /** Returns the number of source registers. */ int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } /** Returns the number of destination registers. */ int8_t numDestRegs() const { return staticInst->numDestRegs(); } // the following are used to track physical register usage // for machines with separate int & FP reg files int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } /** Returns the logical register index of the i'th destination register. */ RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); } /** Returns the logical register index of the i'th source register. */ RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } ////////////////////////////////////////////////// // // RENAME/PHYSICAL REGISTER FILE SUPPORT // ////////////////////////////////////////////////// /** Returns the physical register index of the i'th destination * register. */ PhysRegIndex renamedDestRegIdx(int idx) const { return _destRegIdx[idx]; } /** Returns the physical register index of the i'th source register. */ PhysRegIndex renamedSrcRegIdx(int idx) const { return _srcRegIdx[idx]; } /** Flattens a source architectural register index into a logical index. */ void flattenSrcReg(int idx, TheISA::RegIndex flattened_src) { _flatSrcRegIdx[idx] = flattened_src; } /** Flattens a destination architectural register index into a logical * index. */ void flattenDestReg(int idx, TheISA::RegIndex flattened_dest) { _flatDestRegIdx[idx] = flattened_dest; } /** Returns the flattened register index of the i'th destination * register. */ TheISA::RegIndex flattenedDestRegIdx(int idx) const { return _flatDestRegIdx[idx]; } /** Returns the flattened register index of the i'th source register */ TheISA::RegIndex flattenedSrcRegIdx(int idx) const { return _flatSrcRegIdx[idx]; } /** Returns the physical register index of the previous physical register * that remapped to the same logical register index. */ PhysRegIndex prevDestRegIdx(int idx) const { return _prevDestRegIdx[idx]; } /** Returns if a source register is ready. */ bool isReadySrcRegIdx(int idx) const { return this->_readySrcRegIdx[idx]; } /** Records that one of the source registers is ready. */ void markSrcRegReady() { if (++readyRegs == numSrcRegs()) { status.set(CanIssue); } } /** Marks a specific register as ready. */ void markSrcRegReady(RegIndex src_idx) { _readySrcRegIdx[src_idx] = true; markSrcRegReady(); } /** Renames a destination register to a physical register. Also records * the previous physical register that the logical register mapped to. */ void renameDestReg(int idx, PhysRegIndex renamed_dest, PhysRegIndex previous_rename) { _destRegIdx[idx] = renamed_dest; _prevDestRegIdx[idx] = previous_rename; } /** Renames a source logical register to the physical register which * has/will produce that logical register's result. * @todo: add in whether or not the source register is ready. */ void renameSrcReg(int idx, PhysRegIndex renamed_src) { _srcRegIdx[idx] = renamed_src; } PhysRegIndex readDestRegIdx(int idx) { return _destRegIdx[idx]; } void setDestRegIdx(int idx, PhysRegIndex dest_idx) { _destRegIdx[idx] = dest_idx; } int getDestIdxNum(PhysRegIndex dest_idx) { for (int i=0; i < staticInst->numDestRegs(); i++) { if (_flatDestRegIdx[i] == dest_idx) return i; } return -1; } PhysRegIndex readSrcRegIdx(int idx) { return _srcRegIdx[idx]; } void setSrcRegIdx(int idx, PhysRegIndex src_idx) { _srcRegIdx[idx] = src_idx; } int getSrcIdxNum(PhysRegIndex src_idx) { for (int i=0; i < staticInst->numSrcRegs(); i++) { if (_srcRegIdx[i] == src_idx) return i; } return -1; } //////////////////////////////////////////////////// // // SOURCE-DESTINATION REGISTER VALUES // //////////////////////////////////////////////////// /** Functions that sets an integer or floating point * source register to a value. */ void setIntSrc(int idx, uint64_t val); void setFloatSrc(int idx, FloatReg val); void setFloatRegBitsSrc(int idx, TheISA::FloatRegBits val); TheISA::IntReg* getIntSrcPtr(int idx) { return &instSrc[idx].intVal; } uint64_t readIntSrc(int idx) { return instSrc[idx].intVal; } /** These Instructions read a integer/float/misc. source register * value in the instruction. The instruction's execute function will * call these and it is the interface that is used by the ISA descr. * language (which is why the name isnt readIntSrc(...)) Note: That * the source reg. value is set using the setSrcReg() function. */ IntReg readIntRegOperand(const StaticInst *si, int idx, ThreadID tid = 0); FloatReg readFloatRegOperand(const StaticInst *si, int idx); TheISA::FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx); MiscReg readMiscReg(int misc_reg); MiscReg readMiscRegNoEffect(int misc_reg); MiscReg readMiscRegOperand(const StaticInst *si, int idx); MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx); /** Returns the result value instruction. */ ResultType resultType(int idx) { return instResult[idx].type; } IntReg readIntResult(int idx) { return instResult[idx].res.intVal; } FloatReg readFloatResult(int idx) { return instResult[idx].res.fpVal.f; } FloatRegBits readFloatBitsResult(int idx) { return instResult[idx].res.fpVal.i; } Tick readResultTime(int idx) { return instResult[idx].tick; } IntReg* getIntResultPtr(int idx) { return &instResult[idx].res.intVal; } /** This is the interface that an instruction will use to write * it's destination register. */ void setIntRegOperand(const StaticInst *si, int idx, IntReg val); void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val); void setFloatRegOperandBits(const StaticInst *si, int idx, TheISA::FloatRegBits val); void setMiscReg(int misc_reg, const MiscReg &val); void setMiscRegNoEffect(int misc_reg, const MiscReg &val); void setMiscRegOperand(const StaticInst *si, int idx, const MiscReg &val); void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val); virtual uint64_t readRegOtherThread(unsigned idx, ThreadID tid = InvalidThreadID); virtual void setRegOtherThread(unsigned idx, const uint64_t &val, ThreadID tid = InvalidThreadID); /** Returns the number of consecutive store conditional failures. */ unsigned readStCondFailures() { return thread->storeCondFailures; } /** Sets the number of consecutive store conditional failures. */ void setStCondFailures(unsigned sc_failures) { thread->storeCondFailures = sc_failures; } ////////////////////////////////////////////////////////////// // // INSTRUCTION STATUS FLAGS (READ/SET) // ////////////////////////////////////////////////////////////// /** Sets this instruction as entered on the CPU Reg Dep Map */ void setRegDepEntry() { status.set(RegDepMapEntry); } /** Unsets this instruction as entered on the CPU Reg Dep Map */ void clearRegDepEntry() { status.reset(RegDepMapEntry); } /** Returns whether or not the entry is on the CPU Reg Dep Map */ bool isRegDepEntry() const { return status[RegDepMapEntry]; } /** Sets this instruction as entered on the CPU Reg Dep Map */ void setRemoveList() { status.set(RemoveList); } /** Returns whether or not the entry is on the CPU Reg Dep Map */ bool isRemoveList() const { return status[RemoveList]; } /** Sets this instruction as completed. */ void setCompleted() { status.set(Completed); } /** Returns whether or not this instruction is completed. */ bool isCompleted() const { return status[Completed]; } /** Marks the result as ready. */ void setResultReady() { status.set(ResultReady); } /** Returns whether or not the result is ready. */ bool isResultReady() const { return status[ResultReady]; } /** Sets this instruction as ready to issue. */ void setCanIssue() { status.set(CanIssue); } /** Returns whether or not this instruction is ready to issue. */ bool readyToIssue() const { return status[CanIssue]; } /** Sets this instruction as issued from the IQ. */ void setIssued() { status.set(Issued); } /** Returns whether or not this instruction has issued. */ bool isIssued() const { return status[Issued]; } /** Sets this instruction as executed. */ void setExecuted() { status.set(Executed); } /** Returns whether or not this instruction has executed. */ bool isExecuted() const { return status[Executed]; } /** Sets this instruction as ready to commit. */ void setCanCommit() { status.set(CanCommit); } /** Clears this instruction as being ready to commit. */ void clearCanCommit() { status.reset(CanCommit); } /** Returns whether or not this instruction is ready to commit. */ bool readyToCommit() const { return status[CanCommit]; } void setAtCommit() { status.set(AtCommit); } bool isAtCommit() { return status[AtCommit]; } /** Sets this instruction as committed. */ void setCommitted() { status.set(Committed); } /** Returns whether or not this instruction is committed. */ bool isCommitted() const { return status[Committed]; } /** Sets this instruction as squashed. */ void setSquashed() { status.set(Squashed); } /** Returns whether or not this instruction is squashed. */ bool isSquashed() const { return status[Squashed]; } /** Temporarily sets this instruction as a serialize before instruction. */ void setSerializeBefore() { status.set(SerializeBefore); } /** Clears the serializeBefore part of this instruction. */ void clearSerializeBefore() { status.reset(SerializeBefore); } /** Checks if this serializeBefore is only temporarily set. */ bool isTempSerializeBefore() { return status[SerializeBefore]; } /** Temporarily sets this instruction as a serialize after instruction. */ void setSerializeAfter() { status.set(SerializeAfter); } /** Clears the serializeAfter part of this instruction.*/ void clearSerializeAfter() { status.reset(SerializeAfter); } /** Checks if this serializeAfter is only temporarily set. */ bool isTempSerializeAfter() { return status[SerializeAfter]; } /** Sets the serialization part of this instruction as handled. */ void setSerializeHandled() { status.set(SerializeHandled); } /** Checks if the serialization part of this instruction has been * handled. This does not apply to the temporary serializing * state; it only applies to this instruction's own permanent * serializing state. */ bool isSerializeHandled() { return status[SerializeHandled]; } private: /** Instruction effective address. * @todo: Consider if this is necessary or not. */ Addr instEffAddr; /** Whether or not the effective address calculation is completed. * @todo: Consider if this is necessary or not. */ bool eaCalcDone; public: /** Load queue index. */ int16_t lqIdx; /** Store queue index. */ int16_t sqIdx; /** Iterator pointing to this BaseDynInst in the list of all insts. */ ListIt instListIt; bool onInstList; /** Returns iterator to this instruction in the list of all insts. */ ListIt getInstListIt() { return instListIt; } /** Sets iterator for this instruction in the list of all insts. */ void setInstListIt(ListIt _instListIt) { onInstList = true; instListIt = _instListIt; } /** Count of total number of dynamic instructions. */ static int instcount; void resetInstCount(); /** Dumps out contents of this BaseDynInst. */ void dump(); /** Dumps out contents of this BaseDynInst into given string. */ void dump(std::string &outstring); //inline int curCount() { return curCount(); } }; #endif // __CPU_BASE_DYN_INST_HH__