/* * Copyright (c) 2007 MIPS Technologies, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Korey Sewell * */ #include #include #include "arch/isa_traits.hh" #include "arch/mips/locked_mem.hh" #include "arch/utility.hh" #include "cpu/inorder/resources/cache_unit.hh" #include "cpu/inorder/pipeline_traits.hh" #include "cpu/inorder/cpu.hh" #include "mem/request.hh" using namespace std; using namespace TheISA; using namespace ThePipeline; Tick CacheUnit::CachePort::recvAtomic(PacketPtr pkt) { panic("DefaultFetch doesn't expect recvAtomic callback!"); return curTick; } void CacheUnit::CachePort::recvFunctional(PacketPtr pkt) { panic("DefaultFetch doesn't expect recvFunctional callback!"); } void CacheUnit::CachePort::recvStatusChange(Status status) { if (status == RangeChange) return; panic("DefaultFetch doesn't expect recvStatusChange callback!"); } bool CacheUnit::CachePort::recvTiming(Packet *pkt) { cachePortUnit->processCacheCompletion(pkt); return true; } void CacheUnit::CachePort::recvRetry() { cachePortUnit->recvRetry(); } CacheUnit::CacheUnit(string res_name, int res_id, int res_width, int res_latency, InOrderCPU *_cpu, ThePipeline::Params *params) : Resource(res_name, res_id, res_width, res_latency, _cpu), retryPkt(NULL), retrySlot(-1) { //cacheData.resize(res_width); //slotStatus = new CachePortStatus[width]; //fetchPC = new Addr[width]; cachePort = new CachePort(this); cacheBlocked = false; } Port * CacheUnit::getPort(const string &if_name, int idx) { if (if_name == resName) return cachePort; else return NULL; } int CacheUnit::getSlot(DynInstPtr inst) { if (!inst->validMemAddr()) { panic("Mem. Addr. must be set before requesting cache access\n"); } Addr req_addr = inst->getMemAddr(); if (resName == "icache_port" || find(addrList.begin(), addrList.end(), req_addr) == addrList.end()) { int new_slot = Resource::getSlot(inst); if (new_slot == -1) return -1; inst->memTime = curTick; addrList.push_back(req_addr); addrMap[req_addr] = inst->seqNum; DPRINTF(InOrderCachePort, "[tid:%i]: [sn:%i]: Address %08p added to dependency list\n", inst->readTid(), inst->seqNum, req_addr); return new_slot; } else { DPRINTF(InOrderCachePort, "Denying request because there is an outstanding" " request to/for addr. %08p. by [sn:%i] @ tick %i\n", req_addr, addrMap[req_addr], inst->memTime); return -1; } } void CacheUnit::freeSlot(int slot_num) { vector::iterator vect_it = find(addrList.begin(), addrList.end(), reqMap[slot_num]->inst->getMemAddr()); assert(vect_it != addrList.end()); DPRINTF(InOrderCachePort, "[tid:%i]: Address %08p removed from dependency list\n", reqMap[slot_num]->inst->readTid(), (*vect_it)); addrList.erase(vect_it); Resource::freeSlot(slot_num); } ResReqPtr CacheUnit::getRequest(DynInstPtr inst, int stage_num, int res_idx, int slot_num, unsigned cmd) { ScheduleEntry* sched_entry = inst->resSched.top(); if (!inst->validMemAddr()) { panic("Mem. Addr. must be set before requesting cache access\n"); } int req_size = 0; MemCmd::Command pkt_cmd; if (sched_entry->cmd == InitiateReadData) { pkt_cmd = MemCmd::ReadReq; req_size = inst->getMemAccSize(); DPRINTF(InOrderCachePort, "[tid:%i]: %i byte Read request from [sn:%i] for addr %08p\n", inst->readTid(), req_size, inst->seqNum, inst->getMemAddr()); } else if (sched_entry->cmd == InitiateWriteData) { pkt_cmd = MemCmd::WriteReq; req_size = inst->getMemAccSize(); DPRINTF(InOrderCachePort, "[tid:%i]: %i byte Write request from [sn:%i] for addr %08p\n", inst->readTid(), req_size, inst->seqNum, inst->getMemAddr()); } else if (sched_entry->cmd == InitiateFetch){ pkt_cmd = MemCmd::ReadReq; req_size = sizeof(MachInst); //@TODO: mips16e DPRINTF(InOrderCachePort, "[tid:%i]: %i byte Fetch request from [sn:%i] for addr %08p\n", inst->readTid(), req_size, inst->seqNum, inst->getMemAddr()); } else { panic("%i: Unexpected request type (%i) to %s", curTick, sched_entry->cmd, name()); } return new CacheRequest(this, inst, stage_num, id, slot_num, sched_entry->cmd, req_size, pkt_cmd, 0/*flags*/, this->cpu->readCpuId()); } void CacheUnit::requestAgain(DynInstPtr inst, bool &service_request) { //service_request = false; CacheReqPtr cache_req = dynamic_cast(findRequest(inst)); assert(cache_req); // Check to see if this instruction is requesting the same command // or a different one if (cache_req->cmd != inst->resSched.top()->cmd) { // If different, then update command in the request cache_req->cmd = inst->resSched.top()->cmd; DPRINTF(InOrderCachePort, "[tid:%i]: [sn:%i]: the command for this instruction\n", inst->readTid(), inst->seqNum); service_request = true; } else { // If same command, just check to see if memory access was completed // but dont try to re-execute DPRINTF(InOrderCachePort, "[tid:%i]: [sn:%i]: requesting this resource again\n", inst->readTid(), inst->seqNum); service_request = true; } } void CacheUnit::execute(int slot_num) { if (cacheBlocked) { DPRINTF(InOrderCachePort, "Cache Blocked. Cannot Access\n"); return; } CacheReqPtr cache_req = dynamic_cast(reqMap[slot_num]); assert(cache_req); DynInstPtr inst = cache_req->inst; int tid; tid = inst->readTid(); int seq_num; seq_num = inst->seqNum; //int stage_num = cache_req->getStageNum(); cache_req->fault = NoFault; switch (cache_req->cmd) { case InitiateFetch: DPRINTF(InOrderCachePort, "[tid:%u]: Initiating fetch access to %s for addr. %08p\n", tid, name(), cache_req->inst->getMemAddr()); DPRINTF(InOrderCachePort, "[tid:%u]: Fetching new cache block from addr: %08p\n", tid, cache_req->memReq->getVaddr()); inst->setCurResSlot(slot_num); doDataAccess(inst); break; case CompleteFetch: if (cache_req->isMemAccComplete()) { DPRINTF(InOrderCachePort, "[tid:%i]: Completing Fetch Access for [sn:%i]\n", tid, inst->seqNum); MachInst mach_inst = cache_req->dataPkt->get(); /** * @TODO: May Need This Function for Endianness-Compatibility * mach_inst = * gtoh(*reinterpret_cast(&cacheData[tid][offset])); */ DPRINTF(InOrderCachePort, "[tid:%i]: Fetched instruction is %08p\n", tid, mach_inst); // ExtMachInst ext_inst = makeExtMI(mach_inst, cpu->tcBase(tid)); inst->setMachInst(mach_inst); inst->setASID(tid); inst->setThreadState(cpu->thread[tid]); DPRINTF(InOrderStage, "[tid:%i]: Instruction [sn:%i] is: %s\n", tid, seq_num, inst->staticInst->disassemble(inst->PC)); // Set Up More TraceData info if (inst->traceData) { inst->traceData->setStaticInst(inst->staticInst); inst->traceData->setPC(inst->readPC()); } cache_req->done(); } else { DPRINTF(InOrderCachePort, "[tid:%i]: [sn:%i]: Unable to Complete Fetch Access\n", tid, inst->seqNum); DPRINTF(InOrderStall, "STALL: [tid:%i]: Fetch miss from %08p\n", tid, cache_req->inst->readPC()); cache_req->setCompleted(false); } break; case InitiateReadData: case InitiateWriteData: DPRINTF(InOrderCachePort, "[tid:%u]: Initiating data access to %s for addr. %08p\n", tid, name(), cache_req->inst->getMemAddr()); inst->setCurResSlot(slot_num); //inst->memAccess(); inst->initiateAcc(); break; case CompleteReadData: case CompleteWriteData: DPRINTF(InOrderCachePort, "[tid:%i]: [sn:%i]: Trying to Complete Data Access\n", tid, inst->seqNum); if (cache_req->isMemAccComplete()) { cache_req->done(); } else { DPRINTF(InOrderStall, "STALL: [tid:%i]: Data miss from %08p\n", tid, cache_req->inst->getMemAddr()); cache_req->setCompleted(false); } break; default: fatal("Unrecognized command to %s", resName); } } Fault CacheUnit::doDataAccess(DynInstPtr inst) { Fault fault = NoFault; int tid = 0; tid = inst->readTid(); CacheReqPtr cache_req = dynamic_cast(reqMap[inst->getCurResSlot()]); assert(cache_req); cache_req->dataPkt = new CacheReqPacket(cache_req, cache_req->pktCmd, Packet::Broadcast); if (cache_req->dataPkt->isRead()) { cache_req->dataPkt->dataStatic(cache_req->reqData); } else if (cache_req->dataPkt->isWrite()) { cache_req->dataPkt->dataStatic(&cache_req->inst->storeData); } cache_req->dataPkt->time = curTick; bool do_access = true; // flag to suppress cache access Request *memReq = cache_req->dataPkt->req; if (cache_req->dataPkt->isWrite() && memReq->isLocked()) { assert(cache_req->inst->isStoreConditional()); DPRINTF(InOrderCachePort, "Evaluating Store Conditional access\n"); do_access = TheISA::handleLockedWrite(cpu, memReq); } DPRINTF(InOrderCachePort, "[tid:%i] [sn:%i] attempting to access cache\n", tid, inst->seqNum); //@TODO: If you want to ignore failed store conditional accesses, then // enable this. However, this might skew memory stats because // the failed store conditional access will get ignored. // - Remove optionality here ... if (1/*do_access*/) { if (!cachePort->sendTiming(cache_req->dataPkt)) { DPRINTF(InOrderCachePort, "[tid:%i] [sn:%i] is waiting to retry request\n", tid, inst->seqNum); retrySlot = cache_req->getSlot(); retryReq = cache_req; retryPkt = cache_req->dataPkt; cacheStatus = cacheWaitRetry; //cacheBlocked = true; DPRINTF(InOrderStall, "STALL: \n"); cache_req->setCompleted(false); } else { DPRINTF(InOrderCachePort, "[tid:%i] [sn:%i] is now waiting for cache response\n", tid, inst->seqNum); cache_req->setCompleted(); cache_req->setMemAccPending(); cacheStatus = cacheWaitResponse; cacheBlocked = false; } } else if (!do_access && memReq->isLocked()){ // Store-Conditional instructions complete even if they "failed" assert(cache_req->inst->isStoreConditional()); cache_req->setCompleted(true); DPRINTF(LLSC, "[tid:%i]: T%i Ignoring Failed Store Conditional Access\n", tid, tid); cache_req->dataPkt->req->setExtraData(0); processCacheCompletion(cache_req->dataPkt); // Automatically set these since we ignored the memory access //cache_req->setMemAccPending(false); //cache_req->setMemAccCompleted(); } else { // Make cache request again since access due to // inability to access DPRINTF(InOrderStall, "STALL: \n"); cache_req->setCompleted(false); } return fault; } void CacheUnit::processCacheCompletion(PacketPtr pkt) { // Cast to correct packet type CacheReqPacket* cache_pkt = dynamic_cast(pkt); assert(cache_pkt); if (cache_pkt->cacheReq->isSquashed()) { DPRINTF(InOrderCachePort, "Ignoring completion of squashed access, [tid:%i] [sn:%i]\n", cache_pkt->cacheReq->getInst()->readTid(), cache_pkt->cacheReq->getInst()->seqNum); cache_pkt->cacheReq->done(); return; } DPRINTF(InOrderCachePort, "[tid:%u]: [sn:%i]: Waking from cache access to addr. %08p\n", cache_pkt->cacheReq->getInst()->readTid(), cache_pkt->cacheReq->getInst()->seqNum, cache_pkt->cacheReq->getInst()->getMemAddr()); // Cast to correct request type CacheRequest *cache_req = dynamic_cast( findRequest(cache_pkt->cacheReq->getInst())); assert(cache_req); // Get resource request info // @todo: SMT needs to figure out where to get thread # from. unsigned tid = 0; unsigned stage_num = cache_req->getStageNum(); DynInstPtr inst = cache_req->inst; if (!cache_req->isSquashed()) { if (inst->resSched.top()->cmd == CompleteFetch) { DPRINTF(InOrderCachePort, "[tid:%u]: [sn:%i]: Processing fetch access\n", tid, inst->seqNum); } else if (inst->staticInst && inst->isMemRef()) { DPRINTF(InOrderCachePort, "[tid:%u]: [sn:%i]: Processing cache access\n", tid, inst->seqNum); inst->completeAcc(pkt); if (inst->isLoad()) { assert(cache_pkt->isRead()); if (cache_pkt->req->isLocked()) { DPRINTF(InOrderCachePort, "[tid:%u]: Handling Load-Linked for [sn:%u]\n", tid, inst->seqNum); TheISA::handleLockedRead(cpu, cache_pkt->req); } // @TODO: Hardcoded to for load instructions. Assumes that // the dest. idx 0 is always where the data is loaded to. DPRINTF(InOrderCachePort, "[tid:%u]: [sn:%i]: Data loaded was: %08p\n", tid, inst->seqNum, inst->readIntResult(0)); } else if(inst->isStore()) { assert(cache_pkt->isWrite()); DPRINTF(InOrderCachePort, "[tid:%u]: [sn:%i]: Data stored was: %08p\n", tid, inst->seqNum, getMemData(cache_pkt)); } } cache_req->setMemAccPending(false); cache_req->setMemAccCompleted(); // Wake up the CPU (if it went to sleep and was waiting on this // completion event). cpu->wakeCPU(); DPRINTF(Activity, "[tid:%u] Activating %s due to cache completion\n", tid, cpu->pipelineStage[stage_num]->name()); cpu->switchToActive(stage_num); } else { DPRINTF(InOrderCachePort, "[tid:%u] Miss on block @ %08p completed, but squashed\n", tid, cache_req->inst->readPC()); cache_req->setMemAccCompleted(); } inst->unsetMemAddr(); } void CacheUnit::recvRetry() { DPRINTF(InOrderCachePort, "Retrying Request for [tid:%i] [sn:%i]\n", retryReq->inst->readTid(), retryReq->inst->seqNum); assert(retryPkt != NULL); assert(cacheBlocked); assert(cacheStatus == cacheWaitRetry); if (cachePort->sendTiming(retryPkt)) { cacheStatus = cacheWaitResponse; retryPkt = NULL; cacheBlocked = false; } else { DPRINTF(InOrderCachePort, "Retry Request for [tid:%i] [sn:%i] failed\n", retryReq->inst->readTid(), retryReq->inst->seqNum); } } void CacheUnit::squash(DynInstPtr inst, int stage_num, InstSeqNum squash_seq_num, unsigned tid) { vector slot_remove_list; map::iterator map_it = reqMap.begin(); map::iterator map_end = reqMap.end(); while (map_it != map_end) { ResReqPtr req_ptr = (*map_it).second; if (req_ptr && req_ptr->getInst()->readTid() == tid && req_ptr->getInst()->seqNum > squash_seq_num) { DPRINTF(InOrderCachePort, "[tid:%i] Squashing request from [sn:%i]\n", req_ptr->getInst()->readTid(), req_ptr->getInst()->seqNum); req_ptr->setSquashed(); req_ptr->getInst()->setSquashed(); CacheReqPtr cache_req = dynamic_cast(req_ptr); assert(cache_req); if (!cache_req->isMemAccPending()) { // Mark request for later removal cpu->reqRemoveList.push(req_ptr); // Mark slot for removal from resource slot_remove_list.push_back(req_ptr->getSlot()); } } map_it++; } // Now Delete Slot Entry from Req. Map for (int i = 0; i < slot_remove_list.size(); i++) freeSlot(slot_remove_list[i]); } uint64_t CacheUnit::getMemData(Packet *packet) { switch (packet->getSize()) { case 8: return packet->get(); case 16: return packet->get(); case 32: return packet->get(); case 864: return packet->get(); default: panic("bad store data size = %d\n", packet->getSize()); } }