/*
 * Copyright (c) 2002-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Erik Hallnor
 *          Steve Reinhardt
 */

// FIX ME: make trackBlkAddr use blocksize from actual cache, not hard coded

#include <iomanip>
#include <set>
#include <string>
#include <vector>

#include "base/misc.hh"
#include "base/statistics.hh"
#include "cpu/memtest/memtest.hh"
//#include "cpu/simple_thread.hh"
//#include "mem/cache/base_cache.hh"
#include "mem/mem_object.hh"
#include "mem/port.hh"
#include "mem/packet.hh"
//#include "mem/physical.hh"
#include "mem/request.hh"
#include "sim/builder.hh"
#include "sim/sim_events.hh"
#include "sim/stats.hh"

using namespace std;

int TESTER_ALLOCATOR=0;

bool
MemTest::CpuPort::recvTiming(PacketPtr pkt)
{
    memtest->completeRequest(pkt);
    return true;
}

Tick
MemTest::CpuPort::recvAtomic(PacketPtr pkt)
{
    panic("MemTest doesn't expect recvAtomic callback!");
    return curTick;
}

void
MemTest::CpuPort::recvFunctional(PacketPtr pkt)
{
    //Do nothing if we see one come through
//    if (curTick != 0)//Supress warning durring initialization
//        warn("Functional Writes not implemented in MemTester\n");
    //Need to find any response values that intersect and update
    return;
}

void
MemTest::CpuPort::recvStatusChange(Status status)
{
    if (status == RangeChange) {
        if (!snoopRangeSent) {
            snoopRangeSent = true;
            sendStatusChange(Port::RangeChange);
        }
        return;
    }

    panic("MemTest doesn't expect recvStatusChange callback!");
}

void
MemTest::CpuPort::recvRetry()
{
    memtest->doRetry();
}

void
MemTest::sendPkt(PacketPtr pkt) {
    if (atomic) {
        cachePort.sendAtomic(pkt);
        completeRequest(pkt);
    }
    else if (!cachePort.sendTiming(pkt)) {
        accessRetry = true;
        retryPkt = pkt;
    }

}

MemTest::MemTest(const string &name,
//		 MemInterface *_cache_interface,
//		 PhysicalMemory *main_mem,
//		 PhysicalMemory *check_mem,
                 unsigned _memorySize,
                 unsigned _percentReads,
                 unsigned _percentFunctional,
                 unsigned _percentUncacheable,
                 unsigned _progressInterval,
                 unsigned _percentSourceUnaligned,
                 unsigned _percentDestUnaligned,
                 Addr _traceAddr,
                 Counter _max_loads,
                 bool _atomic)
    : MemObject(name),
      tickEvent(this),
      cachePort("test", this),
      funcPort("functional", this),
      retryPkt(NULL),
//      mainMem(main_mem),
//      checkMem(check_mem),
      size(_memorySize),
      percentReads(_percentReads),
      percentFunctional(_percentFunctional),
      percentUncacheable(_percentUncacheable),
      progressInterval(_progressInterval),
      nextProgressMessage(_progressInterval),
      percentSourceUnaligned(_percentSourceUnaligned),
      percentDestUnaligned(percentDestUnaligned),
      maxLoads(_max_loads),
      atomic(_atomic)
{
    vector<string> cmd;
    cmd.push_back("/bin/ls");
    vector<string> null_vec;
    //  thread = new SimpleThread(NULL, 0, NULL, 0, mainMem);
    curTick = 0;

    cachePort.snoopRangeSent = false;
    funcPort.snoopRangeSent = true;

    // Needs to be masked off once we know the block size.
    traceBlockAddr = _traceAddr;
    baseAddr1 = 0x100000;
    baseAddr2 = 0x400000;
    uncacheAddr = 0x800000;

    // set up counters
    noResponseCycles = 0;
    numReads = 0;
    tickEvent.schedule(0);

    id = TESTER_ALLOCATOR++;

    accessRetry = false;
}

Port *
MemTest::getPort(const std::string &if_name, int idx)
{
    if (if_name == "functional")
        return &funcPort;
    else if (if_name == "test")
        return &cachePort;
    else
        panic("No Such Port\n");
}

void
MemTest::init()
{
    // By the time init() is called, the ports should be hooked up.
    blockSize = cachePort.peerBlockSize();
    blockAddrMask = blockSize - 1;
    traceBlockAddr = blockAddr(traceBlockAddr);

    // initial memory contents for both physical memory and functional
    // memory should be 0; no need to initialize them.
}


void
MemTest::completeRequest(PacketPtr pkt)
{
    Request *req = pkt->req;

    DPRINTF(MemTest, "completing %s at address %x (blk %x)\n",
            pkt->isWrite() ? "write" : "read",
            req->getPaddr(), blockAddr(req->getPaddr()));

    MemTestSenderState *state =
        dynamic_cast<MemTestSenderState *>(pkt->senderState);

    uint8_t *data = state->data;
    uint8_t *pkt_data = pkt->getPtr<uint8_t>();

    //Remove the address from the list of outstanding
    std::set<unsigned>::iterator removeAddr =
        outstandingAddrs.find(req->getPaddr());
    assert(removeAddr != outstandingAddrs.end());
    outstandingAddrs.erase(removeAddr);

    switch (pkt->cmd.toInt()) {
      case MemCmd::ReadResp:

        if (memcmp(pkt_data, data, pkt->getSize()) != 0) {
            panic("%s: read of %x (blk %x) @ cycle %d "
                  "returns %x, expected %x\n", name(),
                  req->getPaddr(), blockAddr(req->getPaddr()), curTick,
                  *pkt_data, *data);
        }

        numReads++;
        numReadsStat++;

        if (numReads == nextProgressMessage) {
            ccprintf(cerr, "%s: completed %d read accesses @%d\n",
                     name(), numReads, curTick);
            nextProgressMessage += progressInterval;
        }

        if (numReads >= maxLoads)
            exitSimLoop("maximum number of loads reached");
        break;

      case MemCmd::WriteResp:
        numWritesStat++;
        break;

      default:
        panic("invalid command %s (%d)", pkt->cmdString(), pkt->cmd.toInt());
    }

    noResponseCycles = 0;
    delete state;
    delete [] data;
    delete pkt->req;
    delete pkt;
}

void
MemTest::regStats()
{
    using namespace Stats;

    numReadsStat
        .name(name() + ".num_reads")
        .desc("number of read accesses completed")
        ;

    numWritesStat
        .name(name() + ".num_writes")
        .desc("number of write accesses completed")
        ;

    numCopiesStat
        .name(name() + ".num_copies")
        .desc("number of copy accesses completed")
        ;
}

void
MemTest::tick()
{
    if (!tickEvent.scheduled())
        tickEvent.schedule(curTick + cycles(1));

    if (++noResponseCycles >= 500000) {
        cerr << name() << ": deadlocked at cycle " << curTick << endl;
        fatal("");
    }

    if (accessRetry) {
        return;
    }

    //make new request
    unsigned cmd = random() % 100;
    unsigned offset = random() % size;
    unsigned base = random() % 2;
    uint64_t data = random();
    unsigned access_size = random() % 4;
    unsigned cacheable = random() % 100;

    //If we aren't doing copies, use id as offset, and do a false sharing
    //mem tester
    //We can eliminate the lower bits of the offset, and then use the id
    //to offset within the blks
    offset = blockAddr(offset);
    offset += id;
    access_size = 0;

    Request *req = new Request();
    uint32_t flags = 0;
    Addr paddr;

    if (cacheable < percentUncacheable) {
        flags |= UNCACHEABLE;
        paddr = uncacheAddr + offset;
    } else {
        paddr = ((base) ? baseAddr1 : baseAddr2) + offset;
    }
    bool probe = (random() % 100 < percentFunctional) && !(flags & UNCACHEABLE);
    //bool probe = false;

    paddr &= ~((1 << access_size) - 1);
    req->setPhys(paddr, 1 << access_size, flags);
    req->setThreadContext(id,0);

    uint8_t *result = new uint8_t[8];

    if (cmd < percentReads) {
        // read

        // For now we only allow one outstanding request per address
        // per tester This means we assume CPU does write forwarding
        // to reads that alias something in the cpu store buffer.
        if (outstandingAddrs.find(paddr) != outstandingAddrs.end()) {
            delete [] result;
            delete req;
            return;
        }

        outstandingAddrs.insert(paddr);

        // ***** NOTE FOR RON: I'm not sure how to access checkMem. - Kevin
        funcPort.readBlob(req->getPaddr(), result, req->getSize());

        DPRINTF(MemTest,
                "initiating read at address %x (blk %x) expecting %x\n",
                req->getPaddr(), blockAddr(req->getPaddr()), *result);

        PacketPtr pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
        pkt->setSrc(0);
        pkt->dataDynamicArray(new uint8_t[req->getSize()]);
        MemTestSenderState *state = new MemTestSenderState(result);
        pkt->senderState = state;

        if (probe) {
            cachePort.sendFunctional(pkt);
            pkt->makeAtomicResponse();
            completeRequest(pkt);
        } else {
            sendPkt(pkt);
        }
    } else {
        // write

        // For now we only allow one outstanding request per addreess
        // per tester.  This means we assume CPU does write forwarding
        // to reads that alias something in the cpu store buffer.
        if (outstandingAddrs.find(paddr) != outstandingAddrs.end()) {
            delete [] result;
            delete req;
            return;
        }

        outstandingAddrs.insert(paddr);

        DPRINTF(MemTest, "initiating write at address %x (blk %x) value %x\n",
                req->getPaddr(), blockAddr(req->getPaddr()), data & 0xff);

        PacketPtr pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
        pkt->setSrc(0);
        uint8_t *pkt_data = new uint8_t[req->getSize()];
        pkt->dataDynamicArray(pkt_data);
        memcpy(pkt_data, &data, req->getSize());
        MemTestSenderState *state = new MemTestSenderState(result);
        pkt->senderState = state;

        funcPort.writeBlob(req->getPaddr(), pkt_data, req->getSize());

        if (probe) {
            cachePort.sendFunctional(pkt);
            pkt->makeAtomicResponse();
            completeRequest(pkt);
        } else {
            sendPkt(pkt);
        }
    }
}

void
MemTest::doRetry()
{
    if (cachePort.sendTiming(retryPkt)) {
        accessRetry = false;
        retryPkt = NULL;
    }
}

BEGIN_DECLARE_SIM_OBJECT_PARAMS(MemTest)

//    SimObjectParam<BaseCache *> cache;
//    SimObjectParam<PhysicalMemory *> main_mem;
//    SimObjectParam<PhysicalMemory *> check_mem;
    Param<unsigned> memory_size;
    Param<unsigned> percent_reads;
    Param<unsigned> percent_functional;
    Param<unsigned> percent_uncacheable;
    Param<unsigned> progress_interval;
    Param<unsigned> percent_source_unaligned;
    Param<unsigned> percent_dest_unaligned;
    Param<Addr> trace_addr;
    Param<Counter> max_loads;
    Param<bool> atomic;

END_DECLARE_SIM_OBJECT_PARAMS(MemTest)


BEGIN_INIT_SIM_OBJECT_PARAMS(MemTest)

//    INIT_PARAM(cache, "L1 cache"),
//    INIT_PARAM(main_mem, "hierarchical memory"),
//    INIT_PARAM(check_mem, "check memory"),
    INIT_PARAM(memory_size, "memory size"),
    INIT_PARAM(percent_reads, "target read percentage"),
    INIT_PARAM(percent_functional, "percentage of access that are functional"),
    INIT_PARAM(percent_uncacheable, "target uncacheable percentage"),
    INIT_PARAM(progress_interval, "progress report interval (in accesses)"),
    INIT_PARAM(percent_source_unaligned,
               "percent of copy source address that are unaligned"),
    INIT_PARAM(percent_dest_unaligned,
               "percent of copy dest address that are unaligned"),
    INIT_PARAM(trace_addr, "address to trace"),
                              INIT_PARAM(max_loads, "terminate when we have reached this load count"),
    INIT_PARAM(atomic, "Is the tester testing atomic mode (or timing)")

END_INIT_SIM_OBJECT_PARAMS(MemTest)


CREATE_SIM_OBJECT(MemTest)
{
    return new MemTest(getInstanceName(), /*cache->getInterface(),*/ /*main_mem,*/
                       /*check_mem,*/ memory_size, percent_reads, percent_functional,
                       percent_uncacheable, progress_interval,
                       percent_source_unaligned, percent_dest_unaligned,
                       trace_addr, max_loads, atomic);
}

REGISTER_SIM_OBJECT("MemTest", MemTest)