/* * Copyright (c) 2011, 2016 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim * Nathanael Premillieu */ #ifndef __CPU_O3_COMM_HH__ #define __CPU_O3_COMM_HH__ #include #include "arch/types.hh" #include "base/types.hh" #include "cpu/inst_seq.hh" #include "sim/faults.hh" /** Physical register index type. * Although the Impl might be a better for this, but there are a few classes * that need this typedef yet are not templated on the Impl. */ using PhysRegIndex = short int; /** Physical register ID. * Like a register ID but physical. The inheritance is private because the * only relationship between this types is functional, and it is done to * prevent code replication. */ class PhysRegId : private RegId { private: PhysRegIndex flatIdx; public: explicit PhysRegId() : RegId(IntRegClass, -1), flatIdx(-1) {} /** Scalar PhysRegId constructor. */ explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx, PhysRegIndex _flatIdx) : RegId(_regClass, _regIdx), flatIdx(_flatIdx) {} /** Vector PhysRegId constructor (w/ elemIndex). */ explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx, ElemIndex elem_idx, PhysRegIndex flat_idx) : RegId(_regClass, _regIdx, elem_idx), flatIdx(flat_idx) { } /** Visible RegId methods */ /** @{ */ using RegId::index; using RegId::classValue; using RegId::isZeroReg; using RegId::className; using RegId::elemIndex; /** @} */ /** * Explicit forward methods, to prevent comparisons of PhysRegId with * RegIds. */ /** @{ */ bool operator<(const PhysRegId& that) const { return RegId::operator<(that); } bool operator==(const PhysRegId& that) const { return RegId::operator==(that); } bool operator!=(const PhysRegId& that) const { return RegId::operator!=(that); } /** @} */ /** @return true if it is an integer physical register. */ bool isIntPhysReg() const { return isIntReg(); } /** @return true if it is a floating-point physical register. */ bool isFloatPhysReg() const { return isFloatReg(); } /** @Return true if it is a condition-code physical register. */ bool isCCPhysReg() const { return isCCReg(); } /** @Return true if it is a vector physical register. */ bool isVectorPhysReg() const { return isVecReg(); } /** @Return true if it is a vector element physical register. */ bool isVectorPhysElem() const { return isVecElem(); } /** @Return true if it is a condition-code physical register. */ bool isMiscPhysReg() const { return isMiscReg(); } /** * Returns true if this register is always associated to the same * architectural register. */ bool isFixedMapping() const { return !isRenameable(); } /** Flat index accessor */ const PhysRegIndex& flatIndex() const { return flatIdx; } static PhysRegId elemId(const PhysRegId* vid, ElemIndex elem) { assert(vid->isVectorPhysReg()); return PhysRegId(VecElemClass, vid->index(), elem); } }; /** Constant pointer definition. * PhysRegIds only need to be created once and then we can just share * pointers */ using PhysRegIdPtr = const PhysRegId*; /** Struct that defines the information passed from fetch to decode. */ template struct DefaultFetchDefaultDecode { typedef typename Impl::DynInstPtr DynInstPtr; int size; DynInstPtr insts[Impl::MaxWidth]; Fault fetchFault; InstSeqNum fetchFaultSN; bool clearFetchFault; }; /** Struct that defines the information passed from decode to rename. */ template struct DefaultDecodeDefaultRename { typedef typename Impl::DynInstPtr DynInstPtr; int size; DynInstPtr insts[Impl::MaxWidth]; }; /** Struct that defines the information passed from rename to IEW. */ template struct DefaultRenameDefaultIEW { typedef typename Impl::DynInstPtr DynInstPtr; int size; DynInstPtr insts[Impl::MaxWidth]; }; /** Struct that defines the information passed from IEW to commit. */ template struct DefaultIEWDefaultCommit { typedef typename Impl::DynInstPtr DynInstPtr; int size; DynInstPtr insts[Impl::MaxWidth]; DynInstPtr mispredictInst[Impl::MaxThreads]; Addr mispredPC[Impl::MaxThreads]; InstSeqNum squashedSeqNum[Impl::MaxThreads]; TheISA::PCState pc[Impl::MaxThreads]; bool squash[Impl::MaxThreads]; bool branchMispredict[Impl::MaxThreads]; bool branchTaken[Impl::MaxThreads]; bool includeSquashInst[Impl::MaxThreads]; }; template struct IssueStruct { typedef typename Impl::DynInstPtr DynInstPtr; int size; DynInstPtr insts[Impl::MaxWidth]; }; /** Struct that defines all backwards communication. */ template struct TimeBufStruct { typedef typename Impl::DynInstPtr DynInstPtr; struct decodeComm { TheISA::PCState nextPC; DynInstPtr mispredictInst; DynInstPtr squashInst; InstSeqNum doneSeqNum; Addr mispredPC; uint64_t branchAddr; unsigned branchCount; bool squash; bool predIncorrect; bool branchMispredict; bool branchTaken; }; decodeComm decodeInfo[Impl::MaxThreads]; struct renameComm { }; renameComm renameInfo[Impl::MaxThreads]; struct iewComm { // Also eventually include skid buffer space. unsigned freeIQEntries; unsigned freeLQEntries; unsigned freeSQEntries; unsigned dispatchedToLQ; unsigned dispatchedToSQ; unsigned iqCount; unsigned ldstqCount; unsigned dispatched; bool usedIQ; bool usedLSQ; }; iewComm iewInfo[Impl::MaxThreads]; struct commitComm { ///////////////////////////////////////////////////////////////////// // This code has been re-structured for better packing of variables // instead of by stage which is the more logical way to arrange the // data. // F = Fetch // D = Decode // I = IEW // R = Rename // As such each member is annotated with who consumes it // e.g. bool variable name // *F,R for Fetch and Rename ///////////////////////////////////////////////////////////////////// /// The pc of the next instruction to execute. This is the next /// instruction for a branch mispredict, but the same instruction for /// order violation and the like TheISA::PCState pc; // *F /// Provide fetch the instruction that mispredicted, if this /// pointer is not-null a misprediction occured DynInstPtr mispredictInst; // *F /// Instruction that caused the a non-mispredict squash DynInstPtr squashInst; // *F /// Hack for now to send back a strictly ordered access to the /// IEW stage. DynInstPtr strictlyOrderedLoad; // *I /// Communication specifically to the IQ to tell the IQ that it can /// schedule a non-speculative instruction. InstSeqNum nonSpecSeqNum; // *I /// Represents the instruction that has either been retired or /// squashed. Similar to having a single bus that broadcasts the /// retired or squashed sequence number. InstSeqNum doneSeqNum; // *F, I /// Tell Rename how many free entries it has in the ROB unsigned freeROBEntries; // *R bool squash; // *F, D, R, I bool robSquashing; // *F, D, R, I /// Rename should re-read number of free rob entries bool usedROB; // *R /// Notify Rename that the ROB is empty bool emptyROB; // *R /// Was the branch taken or not bool branchTaken; // *F /// If an interrupt is pending and fetch should stall bool interruptPending; // *F /// If the interrupt ended up being cleared before being handled bool clearInterrupt; // *F /// Hack for now to send back an strictly ordered access to /// the IEW stage. bool strictlyOrdered; // *I }; commitComm commitInfo[Impl::MaxThreads]; bool decodeBlock[Impl::MaxThreads]; bool decodeUnblock[Impl::MaxThreads]; bool renameBlock[Impl::MaxThreads]; bool renameUnblock[Impl::MaxThreads]; bool iewBlock[Impl::MaxThreads]; bool iewUnblock[Impl::MaxThreads]; }; #endif //__CPU_O3_COMM_HH__