/* * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim * Korey Sewell */ #include "config/use_checker.hh" #include "arch/isa_traits.hh" #include "arch/utility.hh" #include "cpu/checker/cpu.hh" #include "cpu/exetrace.hh" #include "cpu/o3/fetch.hh" #include "mem/packet.hh" #include "mem/request.hh" #include "sim/byteswap.hh" #include "sim/host.hh" #include "sim/root.hh" #if FULL_SYSTEM #include "arch/tlb.hh" #include "arch/vtophys.hh" #include "base/remote_gdb.hh" #include "sim/system.hh" #endif // FULL_SYSTEM #include template Tick DefaultFetch::IcachePort::recvAtomic(PacketPtr pkt) { panic("DefaultFetch doesn't expect recvAtomic callback!"); return curTick; } template void DefaultFetch::IcachePort::recvFunctional(PacketPtr pkt) { panic("DefaultFetch doesn't expect recvFunctional callback!"); } template void DefaultFetch::IcachePort::recvStatusChange(Status status) { if (status == RangeChange) return; panic("DefaultFetch doesn't expect recvStatusChange callback!"); } template bool DefaultFetch::IcachePort::recvTiming(Packet *pkt) { fetch->processCacheCompletion(pkt); return true; } template void DefaultFetch::IcachePort::recvRetry() { fetch->recvRetry(); } template DefaultFetch::DefaultFetch(Params *params) : mem(params->mem), branchPred(params), decodeToFetchDelay(params->decodeToFetchDelay), renameToFetchDelay(params->renameToFetchDelay), iewToFetchDelay(params->iewToFetchDelay), commitToFetchDelay(params->commitToFetchDelay), fetchWidth(params->fetchWidth), cacheBlocked(false), retryPkt(NULL), retryTid(-1), numThreads(params->numberOfThreads), numFetchingThreads(params->smtNumFetchingThreads), interruptPending(false), drainPending(false), switchedOut(false) { if (numThreads > Impl::MaxThreads) fatal("numThreads is not a valid value\n"); // Set fetch stage's status to inactive. _status = Inactive; std::string policy = params->smtFetchPolicy; // Convert string to lowercase std::transform(policy.begin(), policy.end(), policy.begin(), (int(*)(int)) tolower); // Figure out fetch policy if (policy == "singlethread") { fetchPolicy = SingleThread; if (numThreads > 1) panic("Invalid Fetch Policy for a SMT workload."); } else if (policy == "roundrobin") { fetchPolicy = RoundRobin; DPRINTF(Fetch, "Fetch policy set to Round Robin\n"); } else if (policy == "branch") { fetchPolicy = Branch; DPRINTF(Fetch, "Fetch policy set to Branch Count\n"); } else if (policy == "iqcount") { fetchPolicy = IQ; DPRINTF(Fetch, "Fetch policy set to IQ count\n"); } else if (policy == "lsqcount") { fetchPolicy = LSQ; DPRINTF(Fetch, "Fetch policy set to LSQ count\n"); } else { fatal("Invalid Fetch Policy. Options Are: {SingleThread," " RoundRobin,LSQcount,IQcount}\n"); } // Size of cache block. cacheBlkSize = 64; // Create mask to get rid of offset bits. cacheBlkMask = (cacheBlkSize - 1); for (int tid=0; tid < numThreads; tid++) { fetchStatus[tid] = Running; priorityList.push_back(tid); memReq[tid] = NULL; // Create space to store a cache line. cacheData[tid] = new uint8_t[cacheBlkSize]; cacheDataPC[tid] = 0; cacheDataValid[tid] = false; delaySlotInfo[tid].branchSeqNum = -1; delaySlotInfo[tid].numInsts = 0; delaySlotInfo[tid].targetAddr = 0; delaySlotInfo[tid].targetReady = false; stalls[tid].decode = false; stalls[tid].rename = false; stalls[tid].iew = false; stalls[tid].commit = false; } // Get the size of an instruction. instSize = sizeof(TheISA::MachInst); } template std::string DefaultFetch::name() const { return cpu->name() + ".fetch"; } template void DefaultFetch::regStats() { icacheStallCycles .name(name() + ".icacheStallCycles") .desc("Number of cycles fetch is stalled on an Icache miss") .prereq(icacheStallCycles); fetchedInsts .name(name() + ".Insts") .desc("Number of instructions fetch has processed") .prereq(fetchedInsts); fetchedBranches .name(name() + ".Branches") .desc("Number of branches that fetch encountered") .prereq(fetchedBranches); predictedBranches .name(name() + ".predictedBranches") .desc("Number of branches that fetch has predicted taken") .prereq(predictedBranches); fetchCycles .name(name() + ".Cycles") .desc("Number of cycles fetch has run and was not squashing or" " blocked") .prereq(fetchCycles); fetchSquashCycles .name(name() + ".SquashCycles") .desc("Number of cycles fetch has spent squashing") .prereq(fetchSquashCycles); fetchIdleCycles .name(name() + ".IdleCycles") .desc("Number of cycles fetch was idle") .prereq(fetchIdleCycles); fetchBlockedCycles .name(name() + ".BlockedCycles") .desc("Number of cycles fetch has spent blocked") .prereq(fetchBlockedCycles); fetchedCacheLines .name(name() + ".CacheLines") .desc("Number of cache lines fetched") .prereq(fetchedCacheLines); fetchMiscStallCycles .name(name() + ".MiscStallCycles") .desc("Number of cycles fetch has spent waiting on interrupts, or " "bad addresses, or out of MSHRs") .prereq(fetchMiscStallCycles); fetchIcacheSquashes .name(name() + ".IcacheSquashes") .desc("Number of outstanding Icache misses that were squashed") .prereq(fetchIcacheSquashes); fetchNisnDist .init(/* base value */ 0, /* last value */ fetchWidth, /* bucket size */ 1) .name(name() + ".rateDist") .desc("Number of instructions fetched each cycle (Total)") .flags(Stats::pdf); idleRate .name(name() + ".idleRate") .desc("Percent of cycles fetch was idle") .prereq(idleRate); idleRate = fetchIdleCycles * 100 / cpu->numCycles; branchRate .name(name() + ".branchRate") .desc("Number of branch fetches per cycle") .flags(Stats::total); branchRate = fetchedBranches / cpu->numCycles; fetchRate .name(name() + ".rate") .desc("Number of inst fetches per cycle") .flags(Stats::total); fetchRate = fetchedInsts / cpu->numCycles; branchPred.regStats(); } template void DefaultFetch::setCPU(O3CPU *cpu_ptr) { DPRINTF(Fetch, "Setting the CPU pointer.\n"); cpu = cpu_ptr; // Name is finally available, so create the port. icachePort = new IcachePort(this); #if USE_CHECKER if (cpu->checker) { cpu->checker->setIcachePort(icachePort); } #endif // Schedule fetch to get the correct PC from the CPU // scheduleFetchStartupEvent(1); // Fetch needs to start fetching instructions at the very beginning, // so it must start up in active state. switchToActive(); } template void DefaultFetch::setTimeBuffer(TimeBuffer *time_buffer) { DPRINTF(Fetch, "Setting the time buffer pointer.\n"); timeBuffer = time_buffer; // Create wires to get information from proper places in time buffer. fromDecode = timeBuffer->getWire(-decodeToFetchDelay); fromRename = timeBuffer->getWire(-renameToFetchDelay); fromIEW = timeBuffer->getWire(-iewToFetchDelay); fromCommit = timeBuffer->getWire(-commitToFetchDelay); } template void DefaultFetch::setActiveThreads(std::list *at_ptr) { DPRINTF(Fetch, "Setting active threads list pointer.\n"); activeThreads = at_ptr; } template void DefaultFetch::setFetchQueue(TimeBuffer *fq_ptr) { DPRINTF(Fetch, "Setting the fetch queue pointer.\n"); fetchQueue = fq_ptr; // Create wire to write information to proper place in fetch queue. toDecode = fetchQueue->getWire(0); } template void DefaultFetch::initStage() { // Setup PC and nextPC with initial state. for (int tid = 0; tid < numThreads; tid++) { PC[tid] = cpu->readPC(tid); nextPC[tid] = cpu->readNextPC(tid); #if THE_ISA != ALPHA_ISA nextNPC[tid] = cpu->readNextNPC(tid); #endif } } template void DefaultFetch::processCacheCompletion(PacketPtr pkt) { unsigned tid = pkt->req->getThreadNum(); DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid); // Only change the status if it's still waiting on the icache access // to return. if (fetchStatus[tid] != IcacheWaitResponse || pkt->req != memReq[tid] || isSwitchedOut()) { ++fetchIcacheSquashes; delete pkt->req; delete pkt; return; } memcpy(cacheData[tid], pkt->getPtr(), cacheBlkSize); cacheDataValid[tid] = true; if (!drainPending) { // Wake up the CPU (if it went to sleep and was waiting on // this completion event). cpu->wakeCPU(); DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n", tid); switchToActive(); } // Only switch to IcacheAccessComplete if we're not stalled as well. if (checkStall(tid)) { fetchStatus[tid] = Blocked; } else { fetchStatus[tid] = IcacheAccessComplete; } // Reset the mem req to NULL. delete pkt->req; delete pkt; memReq[tid] = NULL; } template bool DefaultFetch::drain() { // Fetch is ready to drain at any time. cpu->signalDrained(); drainPending = true; return true; } template void DefaultFetch::resume() { drainPending = false; } template void DefaultFetch::switchOut() { switchedOut = true; // Branch predictor needs to have its state cleared. branchPred.switchOut(); } template void DefaultFetch::takeOverFrom() { // Reset all state for (int i = 0; i < Impl::MaxThreads; ++i) { stalls[i].decode = 0; stalls[i].rename = 0; stalls[i].iew = 0; stalls[i].commit = 0; PC[i] = cpu->readPC(i); nextPC[i] = cpu->readNextPC(i); #if THE_ISA != ALPHA_ISA nextNPC[i] = cpu->readNextNPC(i); delaySlotInfo[i].branchSeqNum = -1; delaySlotInfo[i].numInsts = 0; delaySlotInfo[i].targetAddr = 0; delaySlotInfo[i].targetReady = false; #endif fetchStatus[i] = Running; } numInst = 0; wroteToTimeBuffer = false; _status = Inactive; switchedOut = false; branchPred.takeOverFrom(); } template void DefaultFetch::wakeFromQuiesce() { DPRINTF(Fetch, "Waking up from quiesce\n"); // Hopefully this is safe // @todo: Allow other threads to wake from quiesce. fetchStatus[0] = Running; } template inline void DefaultFetch::switchToActive() { if (_status == Inactive) { DPRINTF(Activity, "Activating stage.\n"); cpu->activateStage(O3CPU::FetchIdx); _status = Active; } } template inline void DefaultFetch::switchToInactive() { if (_status == Active) { DPRINTF(Activity, "Deactivating stage.\n"); cpu->deactivateStage(O3CPU::FetchIdx); _status = Inactive; } } template bool DefaultFetch::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC, Addr &next_NPC) { // Do branch prediction check here. // A bit of a misnomer...next_PC is actually the current PC until // this function updates it. bool predict_taken; if (!inst->isControl()) { #if THE_ISA == ALPHA_ISA next_PC = next_PC + instSize; inst->setPredTarg(next_PC); #else Addr cur_PC = next_PC; next_PC = cur_PC + instSize; //next_NPC; next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize; inst->setPredTarg(next_NPC); #endif return false; } int tid = inst->threadNumber; #if THE_ISA == ALPHA_ISA predict_taken = branchPred.predict(inst, next_PC, tid); #else Addr pred_PC = next_PC; predict_taken = branchPred.predict(inst, pred_PC, tid); if (predict_taken) { DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid); } else { DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid); } if (predict_taken) { next_PC = next_NPC; next_NPC = pred_PC; // Update delay slot info ++delaySlotInfo[tid].numInsts; delaySlotInfo[tid].targetAddr = pred_PC; DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid, delaySlotInfo[tid].numInsts); } else { // !predict_taken if (inst->isCondDelaySlot()) { next_PC = pred_PC; // The delay slot is skipped here if there is on // prediction } else { next_PC = next_NPC; // No need to declare a delay slot here since // there is no for the pred. target to jump } next_NPC = next_NPC + instSize; } #endif ++fetchedBranches; if (predict_taken) { ++predictedBranches; } return predict_taken; } template bool DefaultFetch::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid) { Fault fault = NoFault; #if FULL_SYSTEM // Flag to say whether or not address is physical addr. unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0; #else unsigned flags = 0; #endif // FULL_SYSTEM if (cacheBlocked || (interruptPending && flags == 0)) { // Hold off fetch from getting new instructions when: // Cache is blocked, or // while an interrupt is pending and we're not in PAL mode, or // fetch is switched out. return false; } // Align the fetch PC so it's at the start of a cache block. fetch_PC = icacheBlockAlignPC(fetch_PC); // If we've already got the block, no need to try to fetch it again. if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) { return true; } // Setup the memReq to do a read of the first instruction's address. // Set the appropriate read size and flags as well. // Build request here. RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags, fetch_PC, cpu->readCpuId(), tid); memReq[tid] = mem_req; // Translate the instruction request. fault = cpu->translateInstReq(mem_req, cpu->thread[tid]); // In the case of faults, the fetch stage may need to stall and wait // for the ITB miss to be handled. // If translation was successful, attempt to read the first // instruction. if (fault == NoFault) { #if 0 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) || memReq[tid]->flags & UNCACHEABLE) { DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a " "misspeculating path)!", memReq[tid]->paddr); ret_fault = TheISA::genMachineCheckFault(); return false; } #endif // Build packet here. PacketPtr data_pkt = new Packet(mem_req, Packet::ReadReq, Packet::Broadcast); data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]); cacheDataPC[tid] = fetch_PC; cacheDataValid[tid] = false; DPRINTF(Fetch, "Fetch: Doing instruction read.\n"); fetchedCacheLines++; // Now do the timing access to see whether or not the instruction // exists within the cache. if (!icachePort->sendTiming(data_pkt)) { assert(retryPkt == NULL); assert(retryTid == -1); DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid); fetchStatus[tid] = IcacheWaitRetry; retryPkt = data_pkt; retryTid = tid; cacheBlocked = true; return false; } DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid); lastIcacheStall[tid] = curTick; DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache " "response.\n", tid); fetchStatus[tid] = IcacheWaitResponse; } else { delete mem_req; memReq[tid] = NULL; } ret_fault = fault; return true; } template inline void DefaultFetch::doSquash(const Addr &new_PC, unsigned tid) { DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n", tid, new_PC); PC[tid] = new_PC; nextPC[tid] = new_PC + instSize; nextNPC[tid] = new_PC + (2 * instSize); // Clear the icache miss if it's outstanding. if (fetchStatus[tid] == IcacheWaitResponse) { DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n", tid); memReq[tid] = NULL; } // Get rid of the retrying packet if it was from this thread. if (retryTid == tid) { assert(cacheBlocked); cacheBlocked = false; retryTid = -1; retryPkt = NULL; delete retryPkt->req; delete retryPkt; } fetchStatus[tid] = Squashing; ++fetchSquashCycles; } template void DefaultFetch::squashFromDecode(const Addr &new_PC, const InstSeqNum &seq_num, unsigned tid) { DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid); doSquash(new_PC, tid); #if THE_ISA != ALPHA_ISA if (seq_num <= delaySlotInfo[tid].branchSeqNum) { delaySlotInfo[tid].numInsts = 0; delaySlotInfo[tid].targetAddr = 0; delaySlotInfo[tid].targetReady = false; } #endif // Tell the CPU to remove any instructions that are in flight between // fetch and decode. cpu->removeInstsUntil(seq_num, tid); } template bool DefaultFetch::checkStall(unsigned tid) const { bool ret_val = false; if (cpu->contextSwitch) { DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid); ret_val = true; } else if (stalls[tid].decode) { DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid); ret_val = true; } else if (stalls[tid].rename) { DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid); ret_val = true; } else if (stalls[tid].iew) { DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid); ret_val = true; } else if (stalls[tid].commit) { DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid); ret_val = true; } return ret_val; } template typename DefaultFetch::FetchStatus DefaultFetch::updateFetchStatus() { //Check Running std::list::iterator threads = (*activeThreads).begin(); while (threads != (*activeThreads).end()) { unsigned tid = *threads++; if (fetchStatus[tid] == Running || fetchStatus[tid] == Squashing || fetchStatus[tid] == IcacheAccessComplete) { if (_status == Inactive) { DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid); if (fetchStatus[tid] == IcacheAccessComplete) { DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache" "completion\n",tid); } cpu->activateStage(O3CPU::FetchIdx); } return Active; } } // Stage is switching from active to inactive, notify CPU of it. if (_status == Active) { DPRINTF(Activity, "Deactivating stage.\n"); cpu->deactivateStage(O3CPU::FetchIdx); } return Inactive; } template void DefaultFetch::squash(const Addr &new_PC, const InstSeqNum &seq_num, bool squash_delay_slot, unsigned tid) { DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid); doSquash(new_PC, tid); #if THE_ISA == ALPHA_ISA // Tell the CPU to remove any instructions that are not in the ROB. cpu->removeInstsNotInROB(tid, true, 0); #else if (seq_num <= delaySlotInfo[tid].branchSeqNum) { delaySlotInfo[tid].numInsts = 0; delaySlotInfo[tid].targetAddr = 0; delaySlotInfo[tid].targetReady = false; } // Tell the CPU to remove any instructions that are not in the ROB. cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num); #endif } template void DefaultFetch::tick() { std::list::iterator threads = (*activeThreads).begin(); bool status_change = false; wroteToTimeBuffer = false; while (threads != (*activeThreads).end()) { unsigned tid = *threads++; // Check the signals for each thread to determine the proper status // for each thread. bool updated_status = checkSignalsAndUpdate(tid); status_change = status_change || updated_status; } DPRINTF(Fetch, "Running stage.\n"); // Reset the number of the instruction we're fetching. numInst = 0; #if FULL_SYSTEM if (fromCommit->commitInfo[0].interruptPending) { interruptPending = true; } if (fromCommit->commitInfo[0].clearInterrupt) { interruptPending = false; } #endif for (threadFetched = 0; threadFetched < numFetchingThreads; threadFetched++) { // Fetch each of the actively fetching threads. fetch(status_change); } // Record number of instructions fetched this cycle for distribution. fetchNisnDist.sample(numInst); if (status_change) { // Change the fetch stage status if there was a status change. _status = updateFetchStatus(); } // If there was activity this cycle, inform the CPU of it. if (wroteToTimeBuffer || cpu->contextSwitch) { DPRINTF(Activity, "Activity this cycle.\n"); cpu->activityThisCycle(); } } template bool DefaultFetch::checkSignalsAndUpdate(unsigned tid) { // Update the per thread stall statuses. if (fromDecode->decodeBlock[tid]) { stalls[tid].decode = true; } if (fromDecode->decodeUnblock[tid]) { assert(stalls[tid].decode); assert(!fromDecode->decodeBlock[tid]); stalls[tid].decode = false; } if (fromRename->renameBlock[tid]) { stalls[tid].rename = true; } if (fromRename->renameUnblock[tid]) { assert(stalls[tid].rename); assert(!fromRename->renameBlock[tid]); stalls[tid].rename = false; } if (fromIEW->iewBlock[tid]) { stalls[tid].iew = true; } if (fromIEW->iewUnblock[tid]) { assert(stalls[tid].iew); assert(!fromIEW->iewBlock[tid]); stalls[tid].iew = false; } if (fromCommit->commitBlock[tid]) { stalls[tid].commit = true; } if (fromCommit->commitUnblock[tid]) { assert(stalls[tid].commit); assert(!fromCommit->commitBlock[tid]); stalls[tid].commit = false; } // Check squash signals from commit. if (fromCommit->commitInfo[tid].squash) { DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash " "from commit.\n",tid); #if THE_ISA == ALPHA_ISA InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum; #else InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum; #endif // In any case, squash. squash(fromCommit->commitInfo[tid].nextPC, doneSeqNum, fromCommit->commitInfo[tid].squashDelaySlot, tid); // Also check if there's a mispredict that happened. if (fromCommit->commitInfo[tid].branchMispredict) { branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum, fromCommit->commitInfo[tid].nextPC, fromCommit->commitInfo[tid].branchTaken, tid); } else { branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum, tid); } return true; } else if (fromCommit->commitInfo[tid].doneSeqNum) { // Update the branch predictor if it wasn't a squashed instruction // that was broadcasted. branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid); } // Check ROB squash signals from commit. if (fromCommit->commitInfo[tid].robSquashing) { DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid); // Continue to squash. fetchStatus[tid] = Squashing; return true; } // Check squash signals from decode. if (fromDecode->decodeInfo[tid].squash) { DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash " "from decode.\n",tid); // Update the branch predictor. if (fromDecode->decodeInfo[tid].branchMispredict) { branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum, fromDecode->decodeInfo[tid].nextPC, fromDecode->decodeInfo[tid].branchTaken, tid); } else { branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum, tid); } if (fetchStatus[tid] != Squashing) { #if THE_ISA == ALPHA_ISA InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum; #else InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum; #endif // Squash unless we're already squashing squashFromDecode(fromDecode->decodeInfo[tid].nextPC, doneSeqNum, tid); return true; } } if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) { DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid); fetchStatus[tid] = Blocked; return true; } if (fetchStatus[tid] == Blocked || fetchStatus[tid] == Squashing) { // Switch status to running if fetch isn't being told to block or // squash this cycle. DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n", tid); fetchStatus[tid] = Running; return true; } // If we've reached this point, we have not gotten any signals that // cause fetch to change its status. Fetch remains the same as before. return false; } template void DefaultFetch::fetch(bool &status_change) { ////////////////////////////////////////// // Start actual fetch ////////////////////////////////////////// int tid = getFetchingThread(fetchPolicy); if (tid == -1 || drainPending) { DPRINTF(Fetch,"There are no more threads available to fetch from.\n"); // Breaks looping condition in tick() threadFetched = numFetchingThreads; return; } DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid); // The current PC. Addr &fetch_PC = PC[tid]; // Fault code for memory access. Fault fault = NoFault; // If returning from the delay of a cache miss, then update the status // to running, otherwise do the cache access. Possibly move this up // to tick() function. if (fetchStatus[tid] == IcacheAccessComplete) { DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid); fetchStatus[tid] = Running; status_change = true; } else if (fetchStatus[tid] == Running) { DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read " "instruction, starting at PC %08p.\n", tid, fetch_PC); bool fetch_success = fetchCacheLine(fetch_PC, fault, tid); if (!fetch_success) { if (cacheBlocked) { ++icacheStallCycles; } else { ++fetchMiscStallCycles; } return; } } else { if (fetchStatus[tid] == Idle) { ++fetchIdleCycles; } else if (fetchStatus[tid] == Blocked) { ++fetchBlockedCycles; } else if (fetchStatus[tid] == Squashing) { ++fetchSquashCycles; } else if (fetchStatus[tid] == IcacheWaitResponse) { ++icacheStallCycles; } // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so // fetch should do nothing. return; } ++fetchCycles; // If we had a stall due to an icache miss, then return. if (fetchStatus[tid] == IcacheWaitResponse) { ++icacheStallCycles; status_change = true; return; } Addr next_PC = fetch_PC; Addr next_NPC = next_PC + instSize; InstSeqNum inst_seq; MachInst inst; ExtMachInst ext_inst; // @todo: Fix this hack. unsigned offset = (fetch_PC & cacheBlkMask) & ~3; if (fault == NoFault) { // If the read of the first instruction was successful, then grab the // instructions from the rest of the cache line and put them into the // queue heading to decode. DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to " "decode.\n",tid); // Need to keep track of whether or not a predicted branch // ended this fetch block. bool predicted_branch = false; // Need to keep track of whether or not a delay slot // instruction has been fetched for (; offset < cacheBlkSize && numInst < fetchWidth && (!predicted_branch || delaySlotInfo[tid].numInsts > 0); ++numInst) { // Get a sequence number. inst_seq = cpu->getAndIncrementInstSeq(); // Make sure this is a valid index. assert(offset <= cacheBlkSize - instSize); // Get the instruction from the array of the cache line. inst = TheISA::gtoh(*reinterpret_cast (&cacheData[tid][offset])); ext_inst = TheISA::makeExtMI(inst, fetch_PC); // Create a new DynInst from the instruction fetched. DynInstPtr instruction = new DynInst(ext_inst, fetch_PC, next_PC, inst_seq, cpu); instruction->setTid(tid); instruction->setASID(tid); instruction->setThreadState(cpu->thread[tid]); DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created " "[sn:%lli]\n", tid, instruction->readPC(), inst_seq); DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid, instruction->staticInst->disassemble(fetch_PC)); instruction->traceData = Trace::getInstRecord(curTick, cpu->tcBase(tid), cpu, instruction->staticInst, instruction->readPC(),tid); predicted_branch = lookupAndUpdateNextPC(instruction, next_PC, next_NPC); // Add instruction to the CPU's list of instructions. instruction->setInstListIt(cpu->addInst(instruction)); // Write the instruction to the first slot in the queue // that heads to decode. toDecode->insts[numInst] = instruction; toDecode->size++; // Increment stat of fetched instructions. ++fetchedInsts; // Move to the next instruction, unless we have a branch. fetch_PC = next_PC; if (instruction->isQuiesce()) { warn("cycle %lli: Quiesce instruction encountered, halting fetch!", curTick); fetchStatus[tid] = QuiescePending; ++numInst; status_change = true; break; } offset += instSize; #if THE_ISA != ALPHA_ISA if (predicted_branch) { delaySlotInfo[tid].branchSeqNum = inst_seq; DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n", tid, inst_seq); continue; } else if (delaySlotInfo[tid].numInsts > 0) { --delaySlotInfo[tid].numInsts; // It's OK to set PC to target of branch if (delaySlotInfo[tid].numInsts == 0) { delaySlotInfo[tid].targetReady = true; // Break the looping condition predicted_branch = true; } DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to" " process.\n", tid, delaySlotInfo[tid].numInsts); } #endif } if (offset >= cacheBlkSize) { DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache " "block.\n", tid); } else if (numInst >= fetchWidth) { DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth " "for this cycle.\n", tid); } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) { DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch " "instruction encountered.\n", tid); } } if (numInst > 0) { wroteToTimeBuffer = true; } // Now that fetching is completed, update the PC to signify what the next // cycle will be. if (fault == NoFault) { #if THE_ISA == ALPHA_ISA DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC); PC[tid] = next_PC; nextPC[tid] = next_PC + instSize; #else if (delaySlotInfo[tid].targetReady && delaySlotInfo[tid].numInsts == 0) { // Set PC to target PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC nextPC[tid] = next_PC + instSize; //next_NPC nextNPC[tid] = next_PC + (2 * instSize); delaySlotInfo[tid].targetReady = false; } else { PC[tid] = next_PC; nextPC[tid] = next_NPC; nextNPC[tid] = next_NPC + instSize; } DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]); #endif } else { // We shouldn't be in an icache miss and also have a fault (an ITB // miss) if (fetchStatus[tid] == IcacheWaitResponse) { panic("Fetch should have exited prior to this!"); } // Send the fault to commit. This thread will not do anything // until commit handles the fault. The only other way it can // wake up is if a squash comes along and changes the PC. #if FULL_SYSTEM assert(numInst != fetchWidth); // Get a sequence number. inst_seq = cpu->getAndIncrementInstSeq(); // We will use a nop in order to carry the fault. ext_inst = TheISA::NoopMachInst; // Create a new DynInst from the dummy nop. DynInstPtr instruction = new DynInst(ext_inst, fetch_PC, next_PC, inst_seq, cpu); instruction->setPredTarg(next_PC + instSize); instruction->setTid(tid); instruction->setASID(tid); instruction->setThreadState(cpu->thread[tid]); instruction->traceData = NULL; instruction->setInstListIt(cpu->addInst(instruction)); instruction->fault = fault; toDecode->insts[numInst] = instruction; toDecode->size++; DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid); fetchStatus[tid] = TrapPending; status_change = true; warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]); #else // !FULL_SYSTEM warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]); #endif // FULL_SYSTEM } } template void DefaultFetch::recvRetry() { assert(cacheBlocked); if (retryPkt != NULL) { assert(retryTid != -1); assert(fetchStatus[retryTid] == IcacheWaitRetry); if (icachePort->sendTiming(retryPkt)) { fetchStatus[retryTid] = IcacheWaitResponse; retryPkt = NULL; retryTid = -1; cacheBlocked = false; } } else { assert(retryTid == -1); // Access has been squashed since it was sent out. Just clear // the cache being blocked. cacheBlocked = false; } } /////////////////////////////////////// // // // SMT FETCH POLICY MAINTAINED HERE // // // /////////////////////////////////////// template int DefaultFetch::getFetchingThread(FetchPriority &fetch_priority) { if (numThreads > 1) { switch (fetch_priority) { case SingleThread: return 0; case RoundRobin: return roundRobin(); case IQ: return iqCount(); case LSQ: return lsqCount(); case Branch: return branchCount(); default: return -1; } } else { int tid = *((*activeThreads).begin()); if (fetchStatus[tid] == Running || fetchStatus[tid] == IcacheAccessComplete || fetchStatus[tid] == Idle) { return tid; } else { return -1; } } } template int DefaultFetch::roundRobin() { std::list::iterator pri_iter = priorityList.begin(); std::list::iterator end = priorityList.end(); int high_pri; while (pri_iter != end) { high_pri = *pri_iter; assert(high_pri <= numThreads); if (fetchStatus[high_pri] == Running || fetchStatus[high_pri] == IcacheAccessComplete || fetchStatus[high_pri] == Idle) { priorityList.erase(pri_iter); priorityList.push_back(high_pri); return high_pri; } pri_iter++; } return -1; } template int DefaultFetch::iqCount() { std::priority_queue PQ; std::list::iterator threads = (*activeThreads).begin(); while (threads != (*activeThreads).end()) { unsigned tid = *threads++; PQ.push(fromIEW->iewInfo[tid].iqCount); } while (!PQ.empty()) { unsigned high_pri = PQ.top(); if (fetchStatus[high_pri] == Running || fetchStatus[high_pri] == IcacheAccessComplete || fetchStatus[high_pri] == Idle) return high_pri; else PQ.pop(); } return -1; } template int DefaultFetch::lsqCount() { std::priority_queue PQ; std::list::iterator threads = (*activeThreads).begin(); while (threads != (*activeThreads).end()) { unsigned tid = *threads++; PQ.push(fromIEW->iewInfo[tid].ldstqCount); } while (!PQ.empty()) { unsigned high_pri = PQ.top(); if (fetchStatus[high_pri] == Running || fetchStatus[high_pri] == IcacheAccessComplete || fetchStatus[high_pri] == Idle) return high_pri; else PQ.pop(); } return -1; } template int DefaultFetch::branchCount() { std::list::iterator threads = (*activeThreads).begin(); panic("Branch Count Fetch policy unimplemented\n"); return *threads; }