/* * Copyright (c) 2010-2013 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_O3_IEW_IMPL_IMPL_HH__ #define __CPU_O3_IEW_IMPL_IMPL_HH__ // @todo: Fix the instantaneous communication among all the stages within // iew. There's a clear delay between issue and execute, yet backwards // communication happens simultaneously. #include #include "arch/utility.hh" #include "config/the_isa.hh" #include "cpu/checker/cpu.hh" #include "cpu/o3/fu_pool.hh" #include "cpu/o3/iew.hh" #include "cpu/timebuf.hh" #include "debug/Activity.hh" #include "debug/Drain.hh" #include "debug/IEW.hh" #include "debug/O3PipeView.hh" #include "params/DerivO3CPU.hh" using namespace std; template DefaultIEW::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params) : issueToExecQueue(params->backComSize, params->forwardComSize), cpu(_cpu), instQueue(_cpu, this, params), ldstQueue(_cpu, this, params), fuPool(params->fuPool), commitToIEWDelay(params->commitToIEWDelay), renameToIEWDelay(params->renameToIEWDelay), issueToExecuteDelay(params->issueToExecuteDelay), dispatchWidth(params->dispatchWidth), issueWidth(params->issueWidth), wbNumInst(0), wbCycle(0), wbWidth(params->wbWidth), numThreads(params->numThreads) { if (dispatchWidth > Impl::MaxWidth) fatal("dispatchWidth (%d) is larger than compiled limit (%d),\n" "\tincrease MaxWidth in src/cpu/o3/impl.hh\n", dispatchWidth, static_cast(Impl::MaxWidth)); if (issueWidth > Impl::MaxWidth) fatal("issueWidth (%d) is larger than compiled limit (%d),\n" "\tincrease MaxWidth in src/cpu/o3/impl.hh\n", issueWidth, static_cast(Impl::MaxWidth)); if (wbWidth > Impl::MaxWidth) fatal("wbWidth (%d) is larger than compiled limit (%d),\n" "\tincrease MaxWidth in src/cpu/o3/impl.hh\n", wbWidth, static_cast(Impl::MaxWidth)); _status = Active; exeStatus = Running; wbStatus = Idle; // Setup wire to read instructions coming from issue. fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay); // Instruction queue needs the queue between issue and execute. instQueue.setIssueToExecuteQueue(&issueToExecQueue); for (ThreadID tid = 0; tid < Impl::MaxThreads; tid++) { dispatchStatus[tid] = Running; fetchRedirect[tid] = false; } updateLSQNextCycle = false; skidBufferMax = (renameToIEWDelay + 1) * params->renameWidth; } template std::string DefaultIEW::name() const { return cpu->name() + ".iew"; } template void DefaultIEW::regProbePoints() { ppDispatch = new ProbePointArg(cpu->getProbeManager(), "Dispatch"); ppMispredict = new ProbePointArg(cpu->getProbeManager(), "Mispredict"); /** * Probe point with dynamic instruction as the argument used to probe when * an instruction starts to execute. */ ppExecute = new ProbePointArg(cpu->getProbeManager(), "Execute"); /** * Probe point with dynamic instruction as the argument used to probe when * an instruction execution completes and it is marked ready to commit. */ ppToCommit = new ProbePointArg(cpu->getProbeManager(), "ToCommit"); } template void DefaultIEW::regStats() { using namespace Stats; instQueue.regStats(); ldstQueue.regStats(); iewIdleCycles .name(name() + ".iewIdleCycles") .desc("Number of cycles IEW is idle"); iewSquashCycles .name(name() + ".iewSquashCycles") .desc("Number of cycles IEW is squashing"); iewBlockCycles .name(name() + ".iewBlockCycles") .desc("Number of cycles IEW is blocking"); iewUnblockCycles .name(name() + ".iewUnblockCycles") .desc("Number of cycles IEW is unblocking"); iewDispatchedInsts .name(name() + ".iewDispatchedInsts") .desc("Number of instructions dispatched to IQ"); iewDispSquashedInsts .name(name() + ".iewDispSquashedInsts") .desc("Number of squashed instructions skipped by dispatch"); iewDispLoadInsts .name(name() + ".iewDispLoadInsts") .desc("Number of dispatched load instructions"); iewDispStoreInsts .name(name() + ".iewDispStoreInsts") .desc("Number of dispatched store instructions"); iewDispNonSpecInsts .name(name() + ".iewDispNonSpecInsts") .desc("Number of dispatched non-speculative instructions"); iewIQFullEvents .name(name() + ".iewIQFullEvents") .desc("Number of times the IQ has become full, causing a stall"); iewLSQFullEvents .name(name() + ".iewLSQFullEvents") .desc("Number of times the LSQ has become full, causing a stall"); memOrderViolationEvents .name(name() + ".memOrderViolationEvents") .desc("Number of memory order violations"); predictedTakenIncorrect .name(name() + ".predictedTakenIncorrect") .desc("Number of branches that were predicted taken incorrectly"); predictedNotTakenIncorrect .name(name() + ".predictedNotTakenIncorrect") .desc("Number of branches that were predicted not taken incorrectly"); branchMispredicts .name(name() + ".branchMispredicts") .desc("Number of branch mispredicts detected at execute"); branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect; iewExecutedInsts .name(name() + ".iewExecutedInsts") .desc("Number of executed instructions"); iewExecLoadInsts .init(cpu->numThreads) .name(name() + ".iewExecLoadInsts") .desc("Number of load instructions executed") .flags(total); iewExecSquashedInsts .name(name() + ".iewExecSquashedInsts") .desc("Number of squashed instructions skipped in execute"); iewExecutedSwp .init(cpu->numThreads) .name(name() + ".exec_swp") .desc("number of swp insts executed") .flags(total); iewExecutedNop .init(cpu->numThreads) .name(name() + ".exec_nop") .desc("number of nop insts executed") .flags(total); iewExecutedRefs .init(cpu->numThreads) .name(name() + ".exec_refs") .desc("number of memory reference insts executed") .flags(total); iewExecutedBranches .init(cpu->numThreads) .name(name() + ".exec_branches") .desc("Number of branches executed") .flags(total); iewExecStoreInsts .name(name() + ".exec_stores") .desc("Number of stores executed") .flags(total); iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts; iewExecRate .name(name() + ".exec_rate") .desc("Inst execution rate") .flags(total); iewExecRate = iewExecutedInsts / cpu->numCycles; iewInstsToCommit .init(cpu->numThreads) .name(name() + ".wb_sent") .desc("cumulative count of insts sent to commit") .flags(total); writebackCount .init(cpu->numThreads) .name(name() + ".wb_count") .desc("cumulative count of insts written-back") .flags(total); producerInst .init(cpu->numThreads) .name(name() + ".wb_producers") .desc("num instructions producing a value") .flags(total); consumerInst .init(cpu->numThreads) .name(name() + ".wb_consumers") .desc("num instructions consuming a value") .flags(total); wbFanout .name(name() + ".wb_fanout") .desc("average fanout of values written-back") .flags(total); wbFanout = producerInst / consumerInst; wbRate .name(name() + ".wb_rate") .desc("insts written-back per cycle") .flags(total); wbRate = writebackCount / cpu->numCycles; } template void DefaultIEW::startupStage() { for (ThreadID tid = 0; tid < numThreads; tid++) { toRename->iewInfo[tid].usedIQ = true; toRename->iewInfo[tid].freeIQEntries = instQueue.numFreeEntries(tid); toRename->iewInfo[tid].usedLSQ = true; toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid); toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid); } // Initialize the checker's dcache port here if (cpu->checker) { cpu->checker->setDcachePort(&cpu->getDataPort()); } cpu->activateStage(O3CPU::IEWIdx); } template void DefaultIEW::setTimeBuffer(TimeBuffer *tb_ptr) { timeBuffer = tb_ptr; // Setup wire to read information from time buffer, from commit. fromCommit = timeBuffer->getWire(-commitToIEWDelay); // Setup wire to write information back to previous stages. toRename = timeBuffer->getWire(0); toFetch = timeBuffer->getWire(0); // Instruction queue also needs main time buffer. instQueue.setTimeBuffer(tb_ptr); } template void DefaultIEW::setRenameQueue(TimeBuffer *rq_ptr) { renameQueue = rq_ptr; // Setup wire to read information from rename queue. fromRename = renameQueue->getWire(-renameToIEWDelay); } template void DefaultIEW::setIEWQueue(TimeBuffer *iq_ptr) { iewQueue = iq_ptr; // Setup wire to write instructions to commit. toCommit = iewQueue->getWire(0); } template void DefaultIEW::setActiveThreads(list *at_ptr) { activeThreads = at_ptr; ldstQueue.setActiveThreads(at_ptr); instQueue.setActiveThreads(at_ptr); } template void DefaultIEW::setScoreboard(Scoreboard *sb_ptr) { scoreboard = sb_ptr; } template bool DefaultIEW::isDrained() const { bool drained = ldstQueue.isDrained() && instQueue.isDrained(); for (ThreadID tid = 0; tid < numThreads; tid++) { if (!insts[tid].empty()) { DPRINTF(Drain, "%i: Insts not empty.\n", tid); drained = false; } if (!skidBuffer[tid].empty()) { DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid); drained = false; } drained = drained && dispatchStatus[tid] == Running; } // Also check the FU pool as instructions are "stored" in FU // completion events until they are done and not accounted for // above if (drained && !fuPool->isDrained()) { DPRINTF(Drain, "FU pool still busy.\n"); drained = false; } return drained; } template void DefaultIEW::drainSanityCheck() const { assert(isDrained()); instQueue.drainSanityCheck(); ldstQueue.drainSanityCheck(); } template void DefaultIEW::takeOverFrom() { // Reset all state. _status = Active; exeStatus = Running; wbStatus = Idle; instQueue.takeOverFrom(); ldstQueue.takeOverFrom(); fuPool->takeOverFrom(); startupStage(); cpu->activityThisCycle(); for (ThreadID tid = 0; tid < numThreads; tid++) { dispatchStatus[tid] = Running; fetchRedirect[tid] = false; } updateLSQNextCycle = false; for (int i = 0; i < issueToExecQueue.getSize(); ++i) { issueToExecQueue.advance(); } } template void DefaultIEW::squash(ThreadID tid) { DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid); // Tell the IQ to start squashing. instQueue.squash(tid); // Tell the LDSTQ to start squashing. ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid); updatedQueues = true; // Clear the skid buffer in case it has any data in it. DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n", tid, fromCommit->commitInfo[tid].doneSeqNum); while (!skidBuffer[tid].empty()) { if (skidBuffer[tid].front()->isLoad()) { toRename->iewInfo[tid].dispatchedToLQ++; } if (skidBuffer[tid].front()->isStore()) { toRename->iewInfo[tid].dispatchedToSQ++; } toRename->iewInfo[tid].dispatched++; skidBuffer[tid].pop(); } emptyRenameInsts(tid); } template void DefaultIEW::squashDueToBranch(const DynInstPtr& inst, ThreadID tid) { DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s " "[sn:%i].\n", tid, inst->pcState(), inst->seqNum); if (!toCommit->squash[tid] || inst->seqNum < toCommit->squashedSeqNum[tid]) { toCommit->squash[tid] = true; toCommit->squashedSeqNum[tid] = inst->seqNum; toCommit->branchTaken[tid] = inst->pcState().branching(); TheISA::PCState pc = inst->pcState(); TheISA::advancePC(pc, inst->staticInst); toCommit->pc[tid] = pc; toCommit->mispredictInst[tid] = inst; toCommit->includeSquashInst[tid] = false; wroteToTimeBuffer = true; } } template void DefaultIEW::squashDueToMemOrder(const DynInstPtr& inst, ThreadID tid) { DPRINTF(IEW, "[tid:%i]: Memory violation, squashing violator and younger " "insts, PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum); // Need to include inst->seqNum in the following comparison to cover the // corner case when a branch misprediction and a memory violation for the // same instruction (e.g. load PC) are detected in the same cycle. In this // case the memory violator should take precedence over the branch // misprediction because it requires the violator itself to be included in // the squash. if (!toCommit->squash[tid] || inst->seqNum <= toCommit->squashedSeqNum[tid]) { toCommit->squash[tid] = true; toCommit->squashedSeqNum[tid] = inst->seqNum; toCommit->pc[tid] = inst->pcState(); toCommit->mispredictInst[tid] = NULL; // Must include the memory violator in the squash. toCommit->includeSquashInst[tid] = true; wroteToTimeBuffer = true; } } template void DefaultIEW::block(ThreadID tid) { DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid); if (dispatchStatus[tid] != Blocked && dispatchStatus[tid] != Unblocking) { toRename->iewBlock[tid] = true; wroteToTimeBuffer = true; } // Add the current inputs to the skid buffer so they can be // reprocessed when this stage unblocks. skidInsert(tid); dispatchStatus[tid] = Blocked; } template void DefaultIEW::unblock(ThreadID tid) { DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid " "buffer %u.\n",tid, tid); // If the skid bufffer is empty, signal back to previous stages to unblock. // Also switch status to running. if (skidBuffer[tid].empty()) { toRename->iewUnblock[tid] = true; wroteToTimeBuffer = true; DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid); dispatchStatus[tid] = Running; } } template void DefaultIEW::wakeDependents(const DynInstPtr& inst) { instQueue.wakeDependents(inst); } template void DefaultIEW::rescheduleMemInst(const DynInstPtr& inst) { instQueue.rescheduleMemInst(inst); } template void DefaultIEW::replayMemInst(const DynInstPtr& inst) { instQueue.replayMemInst(inst); } template void DefaultIEW::blockMemInst(const DynInstPtr& inst) { instQueue.blockMemInst(inst); } template void DefaultIEW::cacheUnblocked() { instQueue.cacheUnblocked(); } template void DefaultIEW::instToCommit(const DynInstPtr& inst) { // This function should not be called after writebackInsts in a // single cycle. That will cause problems with an instruction // being added to the queue to commit without being processed by // writebackInsts prior to being sent to commit. // First check the time slot that this instruction will write // to. If there are free write ports at the time, then go ahead // and write the instruction to that time. If there are not, // keep looking back to see where's the first time there's a // free slot. while ((*iewQueue)[wbCycle].insts[wbNumInst]) { ++wbNumInst; if (wbNumInst == wbWidth) { ++wbCycle; wbNumInst = 0; } } DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n", wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst); // Add finished instruction to queue to commit. (*iewQueue)[wbCycle].insts[wbNumInst] = inst; (*iewQueue)[wbCycle].size++; } template unsigned DefaultIEW::validInstsFromRename() { unsigned inst_count = 0; for (int i=0; isize; i++) { if (!fromRename->insts[i]->isSquashed()) inst_count++; } return inst_count; } template void DefaultIEW::skidInsert(ThreadID tid) { DynInstPtr inst = NULL; while (!insts[tid].empty()) { inst = insts[tid].front(); insts[tid].pop(); DPRINTF(IEW,"[tid:%i]: Inserting [sn:%lli] PC:%s into " "dispatch skidBuffer %i\n",tid, inst->seqNum, inst->pcState(),tid); skidBuffer[tid].push(inst); } assert(skidBuffer[tid].size() <= skidBufferMax && "Skidbuffer Exceeded Max Size"); } template int DefaultIEW::skidCount() { int max=0; list::iterator threads = activeThreads->begin(); list::iterator end = activeThreads->end(); while (threads != end) { ThreadID tid = *threads++; unsigned thread_count = skidBuffer[tid].size(); if (max < thread_count) max = thread_count; } return max; } template bool DefaultIEW::skidsEmpty() { list::iterator threads = activeThreads->begin(); list::iterator end = activeThreads->end(); while (threads != end) { ThreadID tid = *threads++; if (!skidBuffer[tid].empty()) return false; } return true; } template void DefaultIEW::updateStatus() { bool any_unblocking = false; list::iterator threads = activeThreads->begin(); list::iterator end = activeThreads->end(); while (threads != end) { ThreadID tid = *threads++; if (dispatchStatus[tid] == Unblocking) { any_unblocking = true; break; } } // If there are no ready instructions waiting to be scheduled by the IQ, // and there's no stores waiting to write back, and dispatch is not // unblocking, then there is no internal activity for the IEW stage. instQueue.intInstQueueReads++; if (_status == Active && !instQueue.hasReadyInsts() && !ldstQueue.willWB() && !any_unblocking) { DPRINTF(IEW, "IEW switching to idle\n"); deactivateStage(); _status = Inactive; } else if (_status == Inactive && (instQueue.hasReadyInsts() || ldstQueue.willWB() || any_unblocking)) { // Otherwise there is internal activity. Set to active. DPRINTF(IEW, "IEW switching to active\n"); activateStage(); _status = Active; } } template void DefaultIEW::resetEntries() { instQueue.resetEntries(); ldstQueue.resetEntries(); } template bool DefaultIEW::checkStall(ThreadID tid) { bool ret_val(false); if (fromCommit->commitInfo[tid].robSquashing) { DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid); ret_val = true; } else if (instQueue.isFull(tid)) { DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid); ret_val = true; } return ret_val; } template void DefaultIEW::checkSignalsAndUpdate(ThreadID tid) { // Check if there's a squash signal, squash if there is // Check stall signals, block if there is. // If status was Blocked // if so then go to unblocking // If status was Squashing // check if squashing is not high. Switch to running this cycle. if (fromCommit->commitInfo[tid].squash) { squash(tid); if (dispatchStatus[tid] == Blocked || dispatchStatus[tid] == Unblocking) { toRename->iewUnblock[tid] = true; wroteToTimeBuffer = true; } dispatchStatus[tid] = Squashing; fetchRedirect[tid] = false; return; } if (fromCommit->commitInfo[tid].robSquashing) { DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid); dispatchStatus[tid] = Squashing; emptyRenameInsts(tid); wroteToTimeBuffer = true; } if (checkStall(tid)) { block(tid); dispatchStatus[tid] = Blocked; return; } if (dispatchStatus[tid] == Blocked) { // Status from previous cycle was blocked, but there are no more stall // conditions. Switch over to unblocking. DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n", tid); dispatchStatus[tid] = Unblocking; unblock(tid); return; } if (dispatchStatus[tid] == Squashing) { // Switch status to running if rename isn't being told to block or // squash this cycle. DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n", tid); dispatchStatus[tid] = Running; return; } } template void DefaultIEW::sortInsts() { int insts_from_rename = fromRename->size; #ifdef DEBUG for (ThreadID tid = 0; tid < numThreads; tid++) assert(insts[tid].empty()); #endif for (int i = 0; i < insts_from_rename; ++i) { insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]); } } template void DefaultIEW::emptyRenameInsts(ThreadID tid) { DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid); while (!insts[tid].empty()) { if (insts[tid].front()->isLoad()) { toRename->iewInfo[tid].dispatchedToLQ++; } if (insts[tid].front()->isStore()) { toRename->iewInfo[tid].dispatchedToSQ++; } toRename->iewInfo[tid].dispatched++; insts[tid].pop(); } } template void DefaultIEW::wakeCPU() { cpu->wakeCPU(); } template void DefaultIEW::activityThisCycle() { DPRINTF(Activity, "Activity this cycle.\n"); cpu->activityThisCycle(); } template inline void DefaultIEW::activateStage() { DPRINTF(Activity, "Activating stage.\n"); cpu->activateStage(O3CPU::IEWIdx); } template inline void DefaultIEW::deactivateStage() { DPRINTF(Activity, "Deactivating stage.\n"); cpu->deactivateStage(O3CPU::IEWIdx); } template void DefaultIEW::dispatch(ThreadID tid) { // If status is Running or idle, // call dispatchInsts() // If status is Unblocking, // buffer any instructions coming from rename // continue trying to empty skid buffer // check if stall conditions have passed if (dispatchStatus[tid] == Blocked) { ++iewBlockCycles; } else if (dispatchStatus[tid] == Squashing) { ++iewSquashCycles; } // Dispatch should try to dispatch as many instructions as its bandwidth // will allow, as long as it is not currently blocked. if (dispatchStatus[tid] == Running || dispatchStatus[tid] == Idle) { DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run " "dispatch.\n", tid); dispatchInsts(tid); } else if (dispatchStatus[tid] == Unblocking) { // Make sure that the skid buffer has something in it if the // status is unblocking. assert(!skidsEmpty()); // If the status was unblocking, then instructions from the skid // buffer were used. Remove those instructions and handle // the rest of unblocking. dispatchInsts(tid); ++iewUnblockCycles; if (validInstsFromRename()) { // Add the current inputs to the skid buffer so they can be // reprocessed when this stage unblocks. skidInsert(tid); } unblock(tid); } } template void DefaultIEW::dispatchInsts(ThreadID tid) { // Obtain instructions from skid buffer if unblocking, or queue from rename // otherwise. std::queue &insts_to_dispatch = dispatchStatus[tid] == Unblocking ? skidBuffer[tid] : insts[tid]; int insts_to_add = insts_to_dispatch.size(); DynInstPtr inst; bool add_to_iq = false; int dis_num_inst = 0; // Loop through the instructions, putting them in the instruction // queue. for ( ; dis_num_inst < insts_to_add && dis_num_inst < dispatchWidth; ++dis_num_inst) { inst = insts_to_dispatch.front(); if (dispatchStatus[tid] == Unblocking) { DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid " "buffer\n", tid); } // Make sure there's a valid instruction there. assert(inst); DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to " "IQ.\n", tid, inst->pcState(), inst->seqNum, inst->threadNumber); // Be sure to mark these instructions as ready so that the // commit stage can go ahead and execute them, and mark // them as issued so the IQ doesn't reprocess them. // Check for squashed instructions. if (inst->isSquashed()) { DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, " "not adding to IQ.\n", tid); ++iewDispSquashedInsts; insts_to_dispatch.pop(); //Tell Rename That An Instruction has been processed if (inst->isLoad()) { toRename->iewInfo[tid].dispatchedToLQ++; } if (inst->isStore()) { toRename->iewInfo[tid].dispatchedToSQ++; } toRename->iewInfo[tid].dispatched++; continue; } // Check for full conditions. if (instQueue.isFull(tid)) { DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid); // Call function to start blocking. block(tid); // Set unblock to false. Special case where we are using // skidbuffer (unblocking) instructions but then we still // get full in the IQ. toRename->iewUnblock[tid] = false; ++iewIQFullEvents; break; } // Check LSQ if inst is LD/ST if ((inst->isLoad() && ldstQueue.lqFull(tid)) || (inst->isStore() && ldstQueue.sqFull(tid))) { DPRINTF(IEW, "[tid:%i]: Issue: %s has become full.\n",tid, inst->isLoad() ? "LQ" : "SQ"); // Call function to start blocking. block(tid); // Set unblock to false. Special case where we are using // skidbuffer (unblocking) instructions but then we still // get full in the IQ. toRename->iewUnblock[tid] = false; ++iewLSQFullEvents; break; } // Otherwise issue the instruction just fine. if (inst->isLoad()) { DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " "encountered, adding to LSQ.\n", tid); // Reserve a spot in the load store queue for this // memory access. ldstQueue.insertLoad(inst); ++iewDispLoadInsts; add_to_iq = true; toRename->iewInfo[tid].dispatchedToLQ++; } else if (inst->isStore()) { DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " "encountered, adding to LSQ.\n", tid); ldstQueue.insertStore(inst); ++iewDispStoreInsts; if (inst->isStoreConditional()) { // Store conditionals need to be set as "canCommit()" // so that commit can process them when they reach the // head of commit. // @todo: This is somewhat specific to Alpha. inst->setCanCommit(); instQueue.insertNonSpec(inst); add_to_iq = false; ++iewDispNonSpecInsts; } else { add_to_iq = true; } toRename->iewInfo[tid].dispatchedToSQ++; } else if (inst->isMemBarrier() || inst->isWriteBarrier()) { // Same as non-speculative stores. inst->setCanCommit(); instQueue.insertBarrier(inst); add_to_iq = false; } else if (inst->isNop()) { DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, " "skipping.\n", tid); inst->setIssued(); inst->setExecuted(); inst->setCanCommit(); instQueue.recordProducer(inst); iewExecutedNop[tid]++; add_to_iq = false; } else { assert(!inst->isExecuted()); add_to_iq = true; } if (add_to_iq && inst->isNonSpeculative()) { DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction " "encountered, skipping.\n", tid); // Same as non-speculative stores. inst->setCanCommit(); // Specifically insert it as nonspeculative. instQueue.insertNonSpec(inst); ++iewDispNonSpecInsts; add_to_iq = false; } // If the instruction queue is not full, then add the // instruction. if (add_to_iq) { instQueue.insert(inst); } insts_to_dispatch.pop(); toRename->iewInfo[tid].dispatched++; ++iewDispatchedInsts; #if TRACING_ON inst->dispatchTick = curTick() - inst->fetchTick; #endif ppDispatch->notify(inst); } if (!insts_to_dispatch.empty()) { DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid); block(tid); toRename->iewUnblock[tid] = false; } if (dispatchStatus[tid] == Idle && dis_num_inst) { dispatchStatus[tid] = Running; updatedQueues = true; } dis_num_inst = 0; } template void DefaultIEW::printAvailableInsts() { int inst = 0; std::cout << "Available Instructions: "; while (fromIssue->insts[inst]) { if (inst%3==0) std::cout << "\n\t"; std::cout << "PC: " << fromIssue->insts[inst]->pcState() << " TN: " << fromIssue->insts[inst]->threadNumber << " SN: " << fromIssue->insts[inst]->seqNum << " | "; inst++; } std::cout << "\n"; } template void DefaultIEW::executeInsts() { wbNumInst = 0; wbCycle = 0; list::iterator threads = activeThreads->begin(); list::iterator end = activeThreads->end(); while (threads != end) { ThreadID tid = *threads++; fetchRedirect[tid] = false; } // [mengjia] Validate/Expose any loads which are ready last cycle // very tricky, need make the state consistent // if we successfully commit sth, then we need to activate the stage or somehow // problems happen when interacting with squash // NOTE: we always send validations before execute load requests // ldstQueue.exposeLoads(); // Uncomment this if you want to see all available instructions. // @todo This doesn't actually work anymore, we should fix it. // printAvailableInsts(); // Execute/writeback any instructions that are available. int insts_to_execute = fromIssue->size; int inst_num = 0; for (; inst_num < insts_to_execute; ++inst_num) { DPRINTF(IEW, "Execute: Executing instructions from IQ.\n"); DynInstPtr inst = instQueue.getInstToExecute(); DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n", inst->pcState(), inst->threadNumber,inst->seqNum); // Notify potential listeners that this instruction has started // executing ppExecute->notify(inst); // Check if the instruction is squashed; if so then skip it if (inst->isSquashed()) { DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]" " [sn:%i]\n", inst->pcState(), inst->threadNumber, inst->seqNum); // Consider this instruction executed so that commit can go // ahead and retire the instruction. inst->setExecuted(); // Not sure if I should set this here or just let commit try to // commit any squashed instructions. I like the latter a bit more. inst->setCanCommit(); ++iewExecSquashedInsts; continue; } Fault fault = NoFault; // Execute instruction. // Note that if the instruction faults, it will be handled // at the commit stage. if (inst->isMemRef()) { DPRINTF(IEW, "Execute: Calculating address for memory " "reference.\n"); DPRINTF(IEW, "Execute: %s\n", inst->staticInst->getName()); // Tell the LDSTQ to execute this instruction (if it is a load). if (inst->isLoad()) { // Loads will mark themselves as executed, and their writeback // event adds the instruction to the queue to commit // [InvisiSpec] a lifetime of a load // always let it translate --> translation not complete, defer // if !loadInExec, need to check whether there // is a virtual fence ahead // --> if existing virtual fence, defer if (inst->fenceDelay()){ DPRINTF(IEW, "Deferring load due to virtual fence.\n"); inst->onlyWaitForFence(true); instQueue.deferMemInst(inst); continue; } fault = ldstQueue.executeLoad(inst); // [InvisiSpec] delay the load if there is a virtual fence ahead if ((inst->isTranslationDelayed() ) && fault == NoFault) { // A hw page table walk is currently going on; the // instruction must be deferred. DPRINTF(IEW, "Execute: Delayed translation, deferring load.\n"); instQueue.deferMemInst(inst); continue; } if ((inst->specTLBMiss() ) && fault == NoFault) { DPRINTF(IEW, "Execute: Speculative load gets a TLB miss," " deferring load.\n"); instQueue.deferMemInst(inst); continue; } if (inst->isDataPrefetch() || inst->isInstPrefetch()) { inst->fault = NoFault; } } else if (inst->isStore()) { fault = ldstQueue.executeStore(inst); if (inst->isTranslationDelayed() && fault == NoFault) { // A hw page table walk is currently going on; the // instruction must be deferred. DPRINTF(IEW, "Execute: Delayed translation, deferring " "store.\n"); instQueue.deferMemInst(inst); continue; } // If the store had a fault then it may not have a mem req if (fault != NoFault || !inst->readPredicate() || !inst->isStoreConditional()) { // If the instruction faulted, then we need to send it along // to commit without the instruction completing. // Send this instruction to commit, also make sure iew stage // realizes there is activity. inst->setExecuted(); instToCommit(inst); activityThisCycle(); } // Store conditionals will mark themselves as // executed, and their writeback event will add the // instruction to the queue to commit. } else { panic("Unexpected memory type!\n"); } } else { // If the instruction has already faulted, then skip executing it. // Such case can happen when it faulted during ITLB translation. // If we execute the instruction (even if it's a nop) the fault // will be replaced and we will lose it. if (inst->getFault() == NoFault) { inst->execute(); if (!inst->readPredicate()) inst->forwardOldRegs(); } if (inst->srcTainted()) { inst->taintDestRegs(true, "source is tainted"); } else { inst->taintDestRegs(false, "source is not tainted"); } inst->setExecuted(); instToCommit(inst); } updateExeInstStats(inst); // Check if branch prediction was correct, if not then we need // to tell commit to squash in flight instructions. Only // handle this if there hasn't already been something that // redirects fetch in this group of instructions. // This probably needs to prioritize the redirects if a different // scheduler is used. Currently the scheduler schedules the oldest // instruction first, so the branch resolution order will be correct. ThreadID tid = inst->threadNumber; if (!fetchRedirect[tid] || !toCommit->squash[tid] || toCommit->squashedSeqNum[tid] > inst->seqNum) { // Prevent testing for misprediction on load instructions, // that have not been executed. bool loadNotExecuted = !inst->isExecuted() && inst->isLoad(); if (inst->mispredicted() && !loadNotExecuted) { fetchRedirect[tid] = true; DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); DPRINTF(IEW, "Predicted target was PC: %s.\n", inst->readPredTarg()); DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n", inst->pcState()); // If incorrect, then signal the ROB that it must be squashed. squashDueToBranch(inst, tid); ppMispredict->notify(inst); if (inst->readPredTaken()) { predictedTakenIncorrect++; } else { predictedNotTakenIncorrect++; } } else if (ldstQueue.violation(tid)) { assert(inst->isMemRef()); // If there was an ordering violation, then get the // DynInst that caused the violation. Note that this // clears the violation signal. DynInstPtr violator; violator = ldstQueue.getMemDepViolator(tid); DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s " "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n", violator->pcState(), violator->seqNum, inst->pcState(), inst->seqNum, inst->physEffAddrLow); fetchRedirect[tid] = true; // Tell the instruction queue that a violation has occured. instQueue.violation(inst, violator); // Squash. squashDueToMemOrder(violator, tid); ++memOrderViolationEvents; } } else { // Reset any state associated with redirects that will not // be used. if (ldstQueue.violation(tid)) { assert(inst->isMemRef()); DynInstPtr violator = ldstQueue.getMemDepViolator(tid); DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: " "%s, inst PC: %s. Addr is: %#x.\n", violator->pcState(), inst->pcState(), inst->physEffAddrLow); DPRINTF(IEW, "Violation will not be handled because " "already squashing\n"); ++memOrderViolationEvents; } } } // Update and record activity if we processed any instructions. if (inst_num) { if (exeStatus == Idle) { exeStatus = Running; } updatedQueues = true; cpu->activityThisCycle(); } // Need to reset this in case a writeback event needs to write into the // iew queue. That way the writeback event will write into the correct // spot in the queue. wbNumInst = 0; } template void DefaultIEW::writebackInsts() { // Loop through the head of the time buffer and wake any // dependents. These instructions are about to write back. Also // mark scoreboard that this instruction is finally complete. // Either have IEW have direct access to scoreboard, or have this // as part of backwards communication. for (int inst_num = 0; inst_num < wbWidth && toCommit->insts[inst_num]; inst_num++) { DynInstPtr inst = toCommit->insts[inst_num]; ThreadID tid = inst->threadNumber; DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n", inst->seqNum, inst->pcState()); iewInstsToCommit[tid]++; // Notify potential listeners that execution is complete for this // instruction. ppToCommit->notify(inst); // Some instructions will be sent to commit without having // executed because they need commit to handle them. // E.g. Strictly ordered loads have not actually executed when they // are first sent to commit. Instead commit must tell the LSQ // when it's ready to execute the strictly ordered load. if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) { int dependents = instQueue.wakeDependents(inst); for (int i = 0; i < inst->numDestRegs(); i++) { //mark as Ready DPRINTF(IEW,"Setting Destination Register %i (%s)\n", inst->renamedDestRegIdx(i)->index(), inst->renamedDestRegIdx(i)->className()); scoreboard->setReg(inst->renamedDestRegIdx(i)); } if (dependents) { producerInst[tid]++; consumerInst[tid]+= dependents; } writebackCount[tid]++; } } } template void DefaultIEW::tick() { wbNumInst = 0; wbCycle = 0; wroteToTimeBuffer = false; updatedQueues = false; sortInsts(); // Free function units marked as being freed this cycle. fuPool->processFreeUnits(); list::iterator threads = activeThreads->begin(); list::iterator end = activeThreads->end(); // Check stall and squash signals, dispatch any instructions. while (threads != end) { ThreadID tid = *threads++; DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid); checkSignalsAndUpdate(tid); dispatch(tid); } ldstQueue.updateVisibleState(); if (exeStatus != Squashing) { executeInsts(); writebackInsts(); // Have the instruction queue try to schedule any ready instructions. // (In actuality, this scheduling is for instructions that will // be executed next cycle.) instQueue.scheduleReadyInsts(); // Also should advance its own time buffers if the stage ran. // Not the best place for it, but this works (hopefully). issueToExecQueue.advance(); } bool broadcast_free_entries = false; if (updatedQueues || exeStatus == Running || updateLSQNextCycle) { exeStatus = Idle; updateLSQNextCycle = false; broadcast_free_entries = true; } // Writeback any stores using any leftover bandwidth. ldstQueue.writebackStores(); // Check the committed load/store signals to see if there's a load // or store to commit. Also check if it's being told to execute a // nonspeculative instruction. // This is pretty inefficient... threads = activeThreads->begin(); while (threads != end) { ThreadID tid = (*threads++); DPRINTF(IEW,"Processing [tid:%i]\n",tid); // Update structures based on instructions committed. if (fromCommit->commitInfo[tid].doneSeqNum != 0 && !fromCommit->commitInfo[tid].squash && !fromCommit->commitInfo[tid].robSquashing) { ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid); ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid); updateLSQNextCycle = true; instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid); } if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) { //DPRINTF(IEW,"NonspecInst from thread %i",tid); if (fromCommit->commitInfo[tid].strictlyOrdered) { instQueue.replayMemInst( fromCommit->commitInfo[tid].strictlyOrderedLoad); fromCommit->commitInfo[tid].strictlyOrderedLoad->setAtCommit(); } else { instQueue.scheduleNonSpec( fromCommit->commitInfo[tid].nonSpecSeqNum); } } if (broadcast_free_entries) { toFetch->iewInfo[tid].iqCount = instQueue.getCount(tid); toFetch->iewInfo[tid].ldstqCount = ldstQueue.getCount(tid); toRename->iewInfo[tid].usedIQ = true; toRename->iewInfo[tid].freeIQEntries = instQueue.numFreeEntries(tid); toRename->iewInfo[tid].usedLSQ = true; toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid); toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid); wroteToTimeBuffer = true; } DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n", tid, toRename->iewInfo[tid].dispatched); } DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). " "LQ has %i free entries. SQ has %i free entries.\n", instQueue.numFreeEntries(), instQueue.hasReadyInsts(), ldstQueue.numFreeLoadEntries(), ldstQueue.numFreeStoreEntries()); updateStatus(); if (wroteToTimeBuffer) { DPRINTF(Activity, "Activity this cycle.\n"); cpu->activityThisCycle(); } } template void DefaultIEW::updateExeInstStats(const DynInstPtr& inst) { ThreadID tid = inst->threadNumber; iewExecutedInsts++; #if TRACING_ON if (DTRACE(O3PipeView)) { inst->completeTick = curTick() - inst->fetchTick; } #endif // // Control operations // if (inst->isControl()) iewExecutedBranches[tid]++; // // Memory operations // if (inst->isMemRef()) { iewExecutedRefs[tid]++; if (inst->isLoad()) { iewExecLoadInsts[tid]++; } } } template void DefaultIEW::checkMisprediction(const DynInstPtr& inst) { ThreadID tid = inst->threadNumber; if (!fetchRedirect[tid] || !toCommit->squash[tid] || toCommit->squashedSeqNum[tid] > inst->seqNum) { if (inst->mispredicted()) { fetchRedirect[tid] = true; DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", inst->predInstAddr(), inst->predNextInstAddr()); DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x," " NPC: %#x.\n", inst->nextInstAddr(), inst->nextInstAddr()); // If incorrect, then signal the ROB that it must be squashed. squashDueToBranch(inst, tid); if (inst->readPredTaken()) { predictedTakenIncorrect++; } else { predictedNotTakenIncorrect++; } } } } #endif//__CPU_O3_IEW_IMPL_IMPL_HH__