/* * Copyright (c) 2011-2012, 2014 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Korey Sewell */ #ifndef __CPU_O3_LSQ_HH__ #define __CPU_O3_LSQ_HH__ #include #include #include "cpu/o3/lsq_unit.hh" #include "cpu/inst_seq.hh" #include "mem/port.hh" #include "sim/sim_object.hh" struct DerivO3CPUParams; template class LSQ { public: typedef typename Impl::O3CPU O3CPU; typedef typename Impl::DynInstPtr DynInstPtr; typedef typename Impl::CPUPol::IEW IEW; typedef typename Impl::CPUPol::LSQUnit LSQUnit; /** SMT policy. */ enum LSQPolicy { Dynamic, Partitioned, Threshold }; /** Constructs an LSQ with the given parameters. */ LSQ(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params); ~LSQ() { } /** Returns the name of the LSQ. */ std::string name() const; /** Registers statistics of each LSQ unit. */ void regStats(); /** Sets the pointer to the list of active threads. */ void setActiveThreads(std::list *at_ptr); /** Perform sanity checks after a drain. */ void drainSanityCheck() const; /** Has the LSQ drained? */ bool isDrained() const; /** Takes over execution from another CPU's thread. */ void takeOverFrom(); /** Number of entries needed for the given amount of threads.*/ int entryAmount(ThreadID num_threads); void removeEntries(ThreadID tid); /** Reset the max entries for each thread. */ void resetEntries(); /** Resize the max entries for a thread. */ void resizeEntries(unsigned size, ThreadID tid); /** Ticks the LSQ. */ void tick(); /** Ticks a specific LSQ Unit. */ void tick(ThreadID tid) { thread[tid].tick(); } /** Inserts a load into the LSQ. */ void insertLoad(const DynInstPtr &load_inst); /** Inserts a store into the LSQ. */ void insertStore(const DynInstPtr &store_inst); /** Executes a load. */ Fault executeLoad(const DynInstPtr &inst); /** Executes a store. */ Fault executeStore(const DynInstPtr &inst); /** * Commits loads up until the given sequence number for a specific thread. */ void commitLoads(InstSeqNum &youngest_inst, ThreadID tid) { thread[tid].commitLoads(youngest_inst); } /** * Commits stores up until the given sequence number for a specific thread. */ void commitStores(InstSeqNum &youngest_inst, ThreadID tid) { thread[tid].commitStores(youngest_inst); } /** * Attempts to write back stores until all cache ports are used or the * interface becomes blocked. */ void writebackStores(); /** Same as above, but only for one thread. */ void writebackStores(ThreadID tid); /** [mengjia] * attempt to update FenceDelay state for load insts */ void updateVisibleState(); /** Same as above, but only for one thread. */ void updateVisibleState(ThreadID tid); /** * Squash instructions from a thread until the specified sequence number. */ void squash(const InstSeqNum &squashed_num, ThreadID tid) { thread[tid].squash(squashed_num); } /** Returns whether or not there was a memory ordering violation. */ bool violation(); /** * Returns whether or not there was a memory ordering violation for a * specific thread. */ bool violation(ThreadID tid) { return thread[tid].violation(); } /** Gets the instruction that caused the memory ordering violation. */ DynInstPtr getMemDepViolator(ThreadID tid) { return thread[tid].getMemDepViolator(); } /** Returns the head index of the load queue for a specific thread. */ int getLoadHead(ThreadID tid) { return thread[tid].getLoadHead(); } /** Returns the sequence number of the head of the load queue. */ InstSeqNum getLoadHeadSeqNum(ThreadID tid) { return thread[tid].getLoadHeadSeqNum(); } /** Returns the head index of the store queue. */ int getStoreHead(ThreadID tid) { return thread[tid].getStoreHead(); } /** Returns the sequence number of the head of the store queue. */ InstSeqNum getStoreHeadSeqNum(ThreadID tid) { return thread[tid].getStoreHeadSeqNum(); } /** Returns the number of instructions in all of the queues. */ int getCount(); /** Returns the number of instructions in the queues of one thread. */ int getCount(ThreadID tid) { return thread[tid].getCount(); } /** Returns the total number of loads in the load queue. */ int numLoads(); /** Returns the total number of loads for a single thread. */ int numLoads(ThreadID tid) { return thread[tid].numLoads(); } /** Returns the total number of stores in the store queue. */ int numStores(); /** Returns the total number of stores for a single thread. */ int numStores(ThreadID tid) { return thread[tid].numStores(); } /** Returns the number of free load entries. */ unsigned numFreeLoadEntries(); /** Returns the number of free store entries. */ unsigned numFreeStoreEntries(); /** Returns the number of free entries for a specific thread. */ unsigned numFreeEntries(ThreadID tid); /** Returns the number of free entries in the LQ for a specific thread. */ unsigned numFreeLoadEntries(ThreadID tid); /** Returns the number of free entries in the SQ for a specific thread. */ unsigned numFreeStoreEntries(ThreadID tid); /** Returns if the LSQ is full (either LQ or SQ is full). */ bool isFull(); /** * Returns if the LSQ is full for a specific thread (either LQ or SQ is * full). */ bool isFull(ThreadID tid); /** Returns if the LSQ is empty (both LQ and SQ are empty). */ bool isEmpty() const; /** Returns if all of the LQs are empty. */ bool lqEmpty() const; /** Returns if all of the SQs are empty. */ bool sqEmpty() const; /** Returns if any of the LQs are full. */ bool lqFull(); /** Returns if the LQ of a given thread is full. */ bool lqFull(ThreadID tid); /** Returns if any of the SQs are full. */ bool sqFull(); /** Returns if the SQ of a given thread is full. */ bool sqFull(ThreadID tid); /** * Returns if the LSQ is stalled due to a memory operation that must be * replayed. */ bool isStalled(); /** * Returns if the LSQ of a specific thread is stalled due to a memory * operation that must be replayed. */ bool isStalled(ThreadID tid); /** Returns whether or not there are any stores to write back to memory. */ bool hasStoresToWB(); /** Returns whether or not a specific thread has any stores to write back * to memory. */ bool hasStoresToWB(ThreadID tid) { return thread[tid].hasStoresToWB(); } /** Returns the number of stores a specific thread has to write back. */ int numStoresToWB(ThreadID tid) { return thread[tid].numStoresToWB(); } /** Returns the number of stores a specific thread has to write back. */ int numLoadsToVLD(ThreadID tid) { return thread[tid].numLoadsToVLD(); } /** Returns if the LSQ will write back to memory this cycle. */ bool willWB(); /** Returns if the LSQ of a specific thread will write back to memory this * cycle. */ bool willWB(ThreadID tid) { return thread[tid].willWB(); } /** Debugging function to print out all instructions. */ void dumpInsts() const; /** Debugging function to print out instructions from a specific thread. */ void dumpInsts(ThreadID tid) const { thread[tid].dumpInsts(); } /** Executes a read operation, using the load specified at the load * index. */ Fault read(const RequestPtr &req, RequestPtr &sreqLow, RequestPtr &sreqHigh, int load_idx); /** Executes a store operation, using the store specified at the store * index. */ Fault write(const RequestPtr &req, const RequestPtr &sreqLow, const RequestPtr &sreqHigh, uint8_t *data, int store_idx); /** * Retry the previous send that failed. */ void recvReqRetry(); /** * Handles writing back and completing the load or store that has * returned from memory. * * @param pkt Response packet from the memory sub-system */ bool recvTimingResp(PacketPtr pkt); void recvTimingSnoopReq(PacketPtr pkt); /** The CPU pointer. */ O3CPU *cpu; /** The IEW stage pointer. */ IEW *iewStage; protected: /** The LSQ policy for SMT mode. */ LSQPolicy lsqPolicy; /** Transform a SMT sharing policy string into a LSQPolicy value. */ static LSQPolicy readLSQPolicy(const std::string& policy) { std::string policy_ = policy; std::transform(policy_.begin(), policy_.end(), policy_.begin(), (int(*)(int)) tolower); if (policy_ == "dynamic") { return Dynamic; } else if (policy_ == "partitioned") { return Partitioned; } else if (policy_ == "threshold") { return Threshold; } assert(0 && "Invalid LSQ Sharing Policy.Options Are:{Dynamic," "Partitioned, Threshold}"); // Some compilers complain if there is no return. return Dynamic; } /** Auxiliary function to calculate per-thread max LSQ allocation limit. * Depending on a policy, number of entries and possibly number of threads * and threshold, this function calculates how many resources each thread * can occupy at most. */ static uint32_t maxLSQAllocation(const LSQPolicy& pol, uint32_t entries, uint32_t numThreads, uint32_t SMTThreshold) { if (pol == Dynamic) { return entries; } else if (pol == Partitioned) { //@todo:make work if part_amt doesnt divide evenly. return entries / numThreads; } else if (pol == Threshold) { //Divide up by threshold amount //@todo: Should threads check the max and the total //amount of the LSQ return SMTThreshold; } return 0; } /** List of Active Threads in System. */ std::list *activeThreads; /** Total Size of LQ Entries. */ unsigned LQEntries; /** Total Size of SQ Entries. */ unsigned SQEntries; /** Max LQ Size - Used to Enforce Sharing Policies. */ unsigned maxLQEntries; /** Max SQ Size - Used to Enforce Sharing Policies. */ unsigned maxSQEntries; /** The LSQ units for individual threads. */ std::vector thread; /** Number of Threads. */ ThreadID numThreads; }; template Fault LSQ::read(const RequestPtr &req, RequestPtr &sreqLow, RequestPtr &sreqHigh, int load_idx) { ThreadID tid = cpu->contextToThread(req->contextId()); return thread[tid].read(req, sreqLow, sreqHigh, load_idx); } template Fault LSQ::write(const RequestPtr &req, const RequestPtr &sreqLow, const RequestPtr &sreqHigh, uint8_t *data, int store_idx) { ThreadID tid = cpu->contextToThread(req->contextId()); return thread[tid].write(req, sreqLow, sreqHigh, data, store_idx); } #endif // __CPU_O3_LSQ_HH__