/* * Copyright (c) 2011-2012, 2016 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_O3_THREAD_CONTEXT_HH__ #define __CPU_O3_THREAD_CONTEXT_HH__ #include "config/the_isa.hh" #include "cpu/o3/isa_specific.hh" #include "cpu/thread_context.hh" class EndQuiesceEvent; namespace Kernel { class Statistics; } /** * Derived ThreadContext class for use with the O3CPU. It * provides the interface for any external objects to access a * single thread's state and some general CPU state. Any time * external objects try to update state through this interface, * the CPU will create an event to squash all in-flight * instructions in order to ensure state is maintained correctly. * It must be defined specifically for the O3CPU because * not all architectural state is located within the O3ThreadState * (such as the commit PC, and registers), and specific actions * must be taken when using this interface (such as squashing all * in-flight instructions when doing a write to this interface). */ template class O3ThreadContext : public ThreadContext { public: typedef typename Impl::O3CPU O3CPU; /** Pointer to the CPU. */ O3CPU *cpu; /** Pointer to the thread state that this TC corrseponds to. */ O3ThreadState *thread; /** Returns a pointer to the ITB. */ BaseTLB *getITBPtr() { return cpu->itb; } /** Returns a pointer to the DTB. */ BaseTLB *getDTBPtr() { return cpu->dtb; } CheckerCPU *getCheckerCpuPtr() { return NULL; } TheISA::Decoder * getDecoderPtr() { return cpu->fetch.decoder[thread->threadId()]; } /** Returns a pointer to this CPU. */ virtual BaseCPU *getCpuPtr() { return cpu; } /** Reads this CPU's ID. */ virtual int cpuId() const { return cpu->cpuId(); } /** Reads this CPU's Socket ID. */ virtual uint32_t socketId() const { return cpu->socketId(); } virtual ContextID contextId() const { return thread->contextId(); } virtual void setContextId(int id) { thread->setContextId(id); } /** Returns this thread's ID number. */ virtual int threadId() const { return thread->threadId(); } virtual void setThreadId(int id) { return thread->setThreadId(id); } /** Returns a pointer to the system. */ virtual System *getSystemPtr() { return cpu->system; } /** Returns a pointer to this thread's kernel statistics. */ virtual TheISA::Kernel::Statistics *getKernelStats() { return thread->kernelStats; } /** Returns a pointer to this thread's process. */ virtual Process *getProcessPtr() { return thread->getProcessPtr(); } virtual void setProcessPtr(Process *p) { thread->setProcessPtr(p); } virtual PortProxy &getPhysProxy() { return thread->getPhysProxy(); } virtual FSTranslatingPortProxy &getVirtProxy(); virtual void initMemProxies(ThreadContext *tc) { thread->initMemProxies(tc); } virtual SETranslatingPortProxy &getMemProxy() { return thread->getMemProxy(); } /** Returns this thread's status. */ virtual Status status() const { return thread->status(); } /** Sets this thread's status. */ virtual void setStatus(Status new_status) { thread->setStatus(new_status); } /** Set the status to Active. */ virtual void activate(); /** Set the status to Suspended. */ virtual void suspend(); /** Set the status to Halted. */ virtual void halt(); /** Dumps the function profiling information. * @todo: Implement. */ virtual void dumpFuncProfile(); /** Takes over execution of a thread from another CPU. */ virtual void takeOverFrom(ThreadContext *old_context); /** Registers statistics associated with this TC. */ virtual void regStats(const std::string &name); /** Reads the last tick that this thread was activated on. */ virtual Tick readLastActivate(); /** Reads the last tick that this thread was suspended on. */ virtual Tick readLastSuspend(); /** Clears the function profiling information. */ virtual void profileClear(); /** Samples the function profiling information. */ virtual void profileSample(); /** Copies the architectural registers from another TC into this TC. */ virtual void copyArchRegs(ThreadContext *tc); /** Resets all architectural registers to 0. */ virtual void clearArchRegs(); /** Reads an integer register. */ virtual uint64_t readReg(int reg_idx) { return readIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index()); } virtual uint64_t readIntReg(int reg_idx) { return readIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index()); } virtual FloatReg readFloatReg(int reg_idx) { return readFloatRegFlat(flattenRegId(RegId(FloatRegClass, reg_idx)).index()); } virtual FloatRegBits readFloatRegBits(int reg_idx) { return readFloatRegBitsFlat(flattenRegId(RegId(FloatRegClass, reg_idx)).index()); } virtual const VecRegContainer& readVecReg(const RegId& id) const { return readVecRegFlat(flattenRegId(id).index()); } /** * Read vector register operand for modification, hierarchical indexing. */ virtual VecRegContainer& getWritableVecReg(const RegId& id) { return getWritableVecRegFlat(flattenRegId(id).index()); } /** Vector Register Lane Interfaces. */ /** @{ */ /** Reads source vector 8bit operand. */ virtual ConstVecLane8 readVec8BitLaneReg(const RegId& id) const { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Reads source vector 16bit operand. */ virtual ConstVecLane16 readVec16BitLaneReg(const RegId& id) const { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Reads source vector 32bit operand. */ virtual ConstVecLane32 readVec32BitLaneReg(const RegId& id) const { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Reads source vector 64bit operand. */ virtual ConstVecLane64 readVec64BitLaneReg(const RegId& id) const { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Write a lane of the destination vector register. */ virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } /** @} */ virtual const VecElem& readVecElem(const RegId& reg) const { return readVecElemFlat(flattenRegId(reg).index(), reg.elemIndex()); } virtual CCReg readCCReg(int reg_idx) { return readCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index()); } /** Sets an integer register to a value. */ virtual void setIntReg(int reg_idx, uint64_t val) { setIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index(), val); } virtual void setFloatReg(int reg_idx, FloatReg val) { setFloatRegFlat(flattenRegId(RegId(FloatRegClass, reg_idx)).index(), val); } virtual void setFloatRegBits(int reg_idx, FloatRegBits val) { setFloatRegBitsFlat(flattenRegId(RegId(FloatRegClass, reg_idx)).index(), val); } virtual void setVecReg(const RegId& reg, const VecRegContainer& val) { setVecRegFlat(flattenRegId(reg).index(), val); } virtual void setVecElem(const RegId& reg, const VecElem& val) { setVecElemFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } virtual void setCCReg(int reg_idx, CCReg val) { setCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index(), val); } /** Reads this thread's PC state. */ virtual TheISA::PCState pcState() { return cpu->pcState(thread->threadId()); } /** Sets this thread's PC state. */ virtual void pcState(const TheISA::PCState &val); virtual void pcStateNoRecord(const TheISA::PCState &val); /** Reads this thread's PC. */ virtual Addr instAddr() { return cpu->instAddr(thread->threadId()); } /** Reads this thread's next PC. */ virtual Addr nextInstAddr() { return cpu->nextInstAddr(thread->threadId()); } /** Reads this thread's next PC. */ virtual MicroPC microPC() { return cpu->microPC(thread->threadId()); } /** Reads a miscellaneous register. */ virtual MiscReg readMiscRegNoEffect(int misc_reg) const { return cpu->readMiscRegNoEffect(misc_reg, thread->threadId()); } /** Reads a misc. register, including any side-effects the * read might have as defined by the architecture. */ virtual MiscReg readMiscReg(int misc_reg) { return cpu->readMiscReg(misc_reg, thread->threadId()); } /** Sets a misc. register. */ virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val); /** Sets a misc. register, including any side-effects the * write might have as defined by the architecture. */ virtual void setMiscReg(int misc_reg, const MiscReg &val); virtual RegId flattenRegId(const RegId& regId) const; /** Returns the number of consecutive store conditional failures. */ // @todo: Figure out where these store cond failures should go. virtual unsigned readStCondFailures() { return thread->storeCondFailures; } /** Sets the number of consecutive store conditional failures. */ virtual void setStCondFailures(unsigned sc_failures) { thread->storeCondFailures = sc_failures; } /** Executes a syscall in SE mode. */ virtual void syscall(int64_t callnum, Fault *fault) { return cpu->syscall(callnum, thread->threadId(), fault); } /** Reads the funcExeInst counter. */ virtual Counter readFuncExeInst() { return thread->funcExeInst; } /** Returns pointer to the quiesce event. */ virtual EndQuiesceEvent *getQuiesceEvent() { return this->thread->quiesceEvent; } /** check if the cpu is currently in state update mode and squash if not. * This function will return true if a trap is pending or if a fault or * similar is currently writing to the thread context and doesn't want * reset all the state (see noSquashFromTC). */ inline void conditionalSquash() { if (!thread->trapPending && !thread->noSquashFromTC) cpu->squashFromTC(thread->threadId()); } virtual uint64_t readIntRegFlat(int idx); virtual void setIntRegFlat(int idx, uint64_t val); virtual FloatReg readFloatRegFlat(int idx); virtual void setFloatRegFlat(int idx, FloatReg val); virtual FloatRegBits readFloatRegBitsFlat(int idx); virtual void setFloatRegBitsFlat(int idx, FloatRegBits val); virtual const VecRegContainer& readVecRegFlat(int idx) const; /** Read vector register operand for modification, flat indexing. */ virtual VecRegContainer& getWritableVecRegFlat(int idx); virtual void setVecRegFlat(int idx, const VecRegContainer& val); template VecLaneT readVecLaneFlat(int idx, int lId) const { return cpu->template readArchVecLane(idx, lId, thread->threadId()); } template void setVecLaneFlat(int idx, int lId, const LD& val) { cpu->template setArchVecLane(idx, lId, thread->threadId(), val); } virtual const VecElem& readVecElemFlat(const RegIndex& idx, const ElemIndex& elemIndex) const; virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx, const VecElem& val); virtual CCReg readCCRegFlat(int idx); virtual void setCCRegFlat(int idx, CCReg val); }; #endif