/* * Copyright 2014 Google, Inc. * Copyright (c) 2012-2013 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt */ #include "arch/locked_mem.hh" #include "arch/mmapped_ipr.hh" #include "arch/utility.hh" #include "base/bigint.hh" #include "base/output.hh" #include "config/the_isa.hh" #include "cpu/simple/atomic.hh" #include "cpu/exetrace.hh" #include "debug/Drain.hh" #include "debug/ExecFaulting.hh" #include "debug/SimpleCPU.hh" #include "mem/packet.hh" #include "mem/packet_access.hh" #include "mem/physical.hh" #include "params/AtomicSimpleCPU.hh" #include "sim/faults.hh" #include "sim/system.hh" #include "sim/full_system.hh" using namespace std; using namespace TheISA; AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) : Event(CPU_Tick_Pri), cpu(c) { } void AtomicSimpleCPU::TickEvent::process() { cpu->tick(); } const char * AtomicSimpleCPU::TickEvent::description() const { return "AtomicSimpleCPU tick"; } void AtomicSimpleCPU::init() { BaseCPU::init(); // Initialise the ThreadContext's memory proxies tcBase()->initMemProxies(tcBase()); if (FullSystem && !params()->switched_out) { ThreadID size = threadContexts.size(); for (ThreadID i = 0; i < size; ++i) { ThreadContext *tc = threadContexts[i]; // initialize CPU, including PC TheISA::initCPU(tc, tc->contextId()); } } // Atomic doesn't do MT right now, so contextId == threadId ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too } AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p) : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false), simulate_data_stalls(p->simulate_data_stalls), simulate_inst_stalls(p->simulate_inst_stalls), icachePort(name() + ".icache_port", this), dcachePort(name() + ".dcache_port", this), fastmem(p->fastmem), dcache_access(false), dcache_latency(0), ppCommit(nullptr) { _status = Idle; } AtomicSimpleCPU::~AtomicSimpleCPU() { if (tickEvent.scheduled()) { deschedule(tickEvent); } } DrainState AtomicSimpleCPU::drain() { if (switchedOut()) return DrainState::Drained; if (!isDrained()) { DPRINTF(Drain, "Requesting drain: %s\n", pcState()); return DrainState::Draining; } else { if (tickEvent.scheduled()) deschedule(tickEvent); DPRINTF(Drain, "Not executing microcode, no need to drain.\n"); return DrainState::Drained; } } void AtomicSimpleCPU::drainResume() { assert(!tickEvent.scheduled()); if (switchedOut()) return; DPRINTF(SimpleCPU, "Resume\n"); verifyMemoryMode(); assert(!threadContexts.empty()); if (threadContexts.size() > 1) fatal("The atomic CPU only supports one thread.\n"); if (thread->status() == ThreadContext::Active) { schedule(tickEvent, nextCycle()); _status = BaseSimpleCPU::Running; notIdleFraction = 1; } else { _status = BaseSimpleCPU::Idle; notIdleFraction = 0; } } bool AtomicSimpleCPU::tryCompleteDrain() { if (drainState() != DrainState::Draining) return false; DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState()); if (!isDrained()) return false; DPRINTF(Drain, "CPU done draining, processing drain event\n"); signalDrainDone(); return true; } void AtomicSimpleCPU::switchOut() { BaseSimpleCPU::switchOut(); assert(!tickEvent.scheduled()); assert(_status == BaseSimpleCPU::Running || _status == Idle); assert(isDrained()); } void AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) { BaseSimpleCPU::takeOverFrom(oldCPU); // The tick event should have been descheduled by drain() assert(!tickEvent.scheduled()); ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too } void AtomicSimpleCPU::verifyMemoryMode() const { if (!system->isAtomicMode()) { fatal("The atomic CPU requires the memory system to be in " "'atomic' mode.\n"); } } void AtomicSimpleCPU::activateContext(ThreadID thread_num) { DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num); assert(thread_num == 0); assert(thread); assert(_status == Idle); assert(!tickEvent.scheduled()); notIdleFraction = 1; Cycles delta = ticksToCycles(thread->lastActivate - thread->lastSuspend); numCycles += delta; ppCycles->notify(delta); //Make sure ticks are still on multiples of cycles schedule(tickEvent, clockEdge(Cycles(0))); _status = BaseSimpleCPU::Running; } void AtomicSimpleCPU::suspendContext(ThreadID thread_num) { DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); assert(thread_num == 0); assert(thread); if (_status == Idle) return; assert(_status == BaseSimpleCPU::Running); // tick event may not be scheduled if this gets called from inside // an instruction's execution, e.g. "quiesce" if (tickEvent.scheduled()) deschedule(tickEvent); notIdleFraction = 0; _status = Idle; } Tick AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt) { DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), pkt->cmdString()); // X86 ISA: Snooping an invalidation for monitor/mwait AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner); if(cpu->getAddrMonitor()->doMonitor(pkt)) { cpu->wakeup(); } // if snoop invalidates, release any associated locks if (pkt->isInvalidate()) { DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", pkt->getAddr()); TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); } return 0; } void AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt) { DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), pkt->cmdString()); // X86 ISA: Snooping an invalidation for monitor/mwait AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner); if(cpu->getAddrMonitor()->doMonitor(pkt)) { cpu->wakeup(); } // if snoop invalidates, release any associated locks if (pkt->isInvalidate()) { DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", pkt->getAddr()); TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); } } Fault AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size, unsigned flags) { // use the CPU's statically allocated read request and packet objects Request *req = &data_read_req; if (traceData) traceData->setMem(addr, size, flags); //The size of the data we're trying to read. int fullSize = size; //The address of the second part of this access if it needs to be split //across a cache line boundary. Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); if (secondAddr > addr) size = secondAddr - addr; dcache_latency = 0; req->taskId(taskId()); while (1) { req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); // translate to physical address Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read); // Now do the access. if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) { Packet pkt(req, Packet::makeReadCmd(req)); pkt.dataStatic(data); if (req->isMmappedIpr()) dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt); else { if (fastmem && system->isMemAddr(pkt.getAddr())) system->getPhysMem().access(&pkt); else dcache_latency += dcachePort.sendAtomic(&pkt); } dcache_access = true; assert(!pkt.isError()); if (req->isLLSC()) { TheISA::handleLockedRead(thread, req); } } //If there's a fault, return it if (fault != NoFault) { if (req->isPrefetch()) { return NoFault; } else { return fault; } } //If we don't need to access a second cache line, stop now. if (secondAddr <= addr) { if (req->isLockedRMW() && fault == NoFault) { assert(!locked); locked = true; } return fault; } /* * Set up for accessing the second cache line. */ //Move the pointer we're reading into to the correct location. data += size; //Adjust the size to get the remaining bytes. size = addr + fullSize - secondAddr; //And access the right address. addr = secondAddr; } } Fault AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *res) { static uint8_t zero_array[64] = {}; if (data == NULL) { assert(size <= 64); assert(flags & Request::CACHE_BLOCK_ZERO); // This must be a cache block cleaning request data = zero_array; } // use the CPU's statically allocated write request and packet objects Request *req = &data_write_req; if (traceData) traceData->setMem(addr, size, flags); //The size of the data we're trying to read. int fullSize = size; //The address of the second part of this access if it needs to be split //across a cache line boundary. Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); if(secondAddr > addr) size = secondAddr - addr; dcache_latency = 0; req->taskId(taskId()); while(1) { req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); // translate to physical address Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write); // Now do the access. if (fault == NoFault) { MemCmd cmd = MemCmd::WriteReq; // default bool do_access = true; // flag to suppress cache access if (req->isLLSC()) { cmd = MemCmd::StoreCondReq; do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask); } else if (req->isSwap()) { cmd = MemCmd::SwapReq; if (req->isCondSwap()) { assert(res); req->setExtraData(*res); } } if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) { Packet pkt = Packet(req, cmd); pkt.dataStatic(data); if (req->isMmappedIpr()) { dcache_latency += TheISA::handleIprWrite(thread->getTC(), &pkt); } else { if (fastmem && system->isMemAddr(pkt.getAddr())) system->getPhysMem().access(&pkt); else dcache_latency += dcachePort.sendAtomic(&pkt); } dcache_access = true; assert(!pkt.isError()); if (req->isSwap()) { assert(res); memcpy(res, pkt.getConstPtr(), fullSize); } } if (res && !req->isSwap()) { *res = req->getExtraData(); } } //If there's a fault or we don't need to access a second cache line, //stop now. if (fault != NoFault || secondAddr <= addr) { if (req->isLockedRMW() && fault == NoFault) { assert(locked); locked = false; } if (fault != NoFault && req->isPrefetch()) { return NoFault; } else { return fault; } } /* * Set up for accessing the second cache line. */ //Move the pointer we're reading into to the correct location. data += size; //Adjust the size to get the remaining bytes. size = addr + fullSize - secondAddr; //And access the right address. addr = secondAddr; } } void AtomicSimpleCPU::tick() { DPRINTF(SimpleCPU, "Tick\n"); Tick latency = 0; for (int i = 0; i < width || locked; ++i) { numCycles++; ppCycles->notify(1); if (!curStaticInst || !curStaticInst->isDelayedCommit()) { checkForInterrupts(); checkPcEventQueue(); } // We must have just got suspended by a PC event if (_status == Idle) { tryCompleteDrain(); return; } Fault fault = NoFault; TheISA::PCState pcState = thread->pcState(); bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst; if (needToFetch) { ifetch_req.taskId(taskId()); setupFetchRequest(&ifetch_req); fault = thread->itb->translateAtomic(&ifetch_req, tc, BaseTLB::Execute); } if (fault == NoFault) { Tick icache_latency = 0; bool icache_access = false; dcache_access = false; // assume no dcache access if (needToFetch) { // This is commented out because the decoder would act like // a tiny cache otherwise. It wouldn't be flushed when needed // like the I cache. It should be flushed, and when that works // this code should be uncommented. //Fetch more instruction memory if necessary //if(decoder.needMoreBytes()) //{ icache_access = true; Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq); ifetch_pkt.dataStatic(&inst); if (fastmem && system->isMemAddr(ifetch_pkt.getAddr())) system->getPhysMem().access(&ifetch_pkt); else icache_latency = icachePort.sendAtomic(&ifetch_pkt); assert(!ifetch_pkt.isError()); // ifetch_req is initialized to read the instruction directly // into the CPU object's inst field. //} } preExecute(); if (curStaticInst) { fault = curStaticInst->execute(this, traceData); // keep an instruction count if (fault == NoFault) { countInst(); ppCommit->notify(std::make_pair(thread, curStaticInst)); } else if (traceData && !DTRACE(ExecFaulting)) { delete traceData; traceData = NULL; } postExecute(); } // @todo remove me after debugging with legion done if (curStaticInst && (!curStaticInst->isMicroop() || curStaticInst->isFirstMicroop())) instCnt++; Tick stall_ticks = 0; if (simulate_inst_stalls && icache_access) stall_ticks += icache_latency; if (simulate_data_stalls && dcache_access) stall_ticks += dcache_latency; if (stall_ticks) { // the atomic cpu does its accounting in ticks, so // keep counting in ticks but round to the clock // period latency += divCeil(stall_ticks, clockPeriod()) * clockPeriod(); } } if(fault != NoFault || !stayAtPC) advancePC(fault); } if (tryCompleteDrain()) return; // instruction takes at least one cycle if (latency < clockPeriod()) latency = clockPeriod(); if (_status != Idle) schedule(tickEvent, curTick() + latency); } void AtomicSimpleCPU::regProbePoints() { BaseCPU::regProbePoints(); ppCommit = new ProbePointArg> (getProbeManager(), "Commit"); } void AtomicSimpleCPU::printAddr(Addr a) { dcachePort.printAddr(a); } //////////////////////////////////////////////////////////////////////// // // AtomicSimpleCPU Simulation Object // AtomicSimpleCPU * AtomicSimpleCPUParams::create() { numThreads = 1; if (!FullSystem && workload.size() != 1) panic("only one workload allowed"); return new AtomicSimpleCPU(this); }