/* * Copyright (c) 2012-2013 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt */ #ifndef __CPU_SIMPLE_TIMING_HH__ #define __CPU_SIMPLE_TIMING_HH__ #include "cpu/simple/base.hh" #include "cpu/translation.hh" #include "params/TimingSimpleCPU.hh" class TimingSimpleCPU : public BaseSimpleCPU { public: TimingSimpleCPU(TimingSimpleCPUParams * params); virtual ~TimingSimpleCPU(); virtual void init(); private: /* * If an access needs to be broken into fragments, currently at most two, * the the following two classes are used as the sender state of the * packets so the CPU can keep track of everything. In the main packet * sender state, there's an array with a spot for each fragment. If a * fragment has already been accepted by the CPU, aka isn't waiting for * a retry, it's pointer is NULL. After each fragment has successfully * been processed, the "outstanding" counter is decremented. Once the * count is zero, the entire larger access is complete. */ class SplitMainSenderState : public Packet::SenderState { public: int outstanding; PacketPtr fragments[2]; int getPendingFragment() { if (fragments[0]) { return 0; } else if (fragments[1]) { return 1; } else { return -1; } } }; class SplitFragmentSenderState : public Packet::SenderState { public: SplitFragmentSenderState(PacketPtr _bigPkt, int _index) : bigPkt(_bigPkt), index(_index) {} PacketPtr bigPkt; int index; void clearFromParent() { SplitMainSenderState * main_send_state = dynamic_cast(bigPkt->senderState); main_send_state->fragments[index] = NULL; } }; class FetchTranslation : public BaseTLB::Translation { protected: TimingSimpleCPU *cpu; public: FetchTranslation(TimingSimpleCPU *_cpu) : cpu(_cpu) {} void markDelayed() { assert(cpu->_status == BaseSimpleCPU::Running); cpu->_status = ITBWaitResponse; } void finish(Fault fault, RequestPtr req, ThreadContext *tc, BaseTLB::Mode mode) { cpu->sendFetch(fault, req, tc); } }; FetchTranslation fetchTranslation; void sendData(RequestPtr req, uint8_t *data, uint64_t *res, bool read); void sendSplitData(RequestPtr req1, RequestPtr req2, RequestPtr req, uint8_t *data, bool read); void translationFault(Fault fault); void buildPacket(PacketPtr &pkt, RequestPtr req, bool read); void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2, RequestPtr req1, RequestPtr req2, RequestPtr req, uint8_t *data, bool read); bool handleReadPacket(PacketPtr pkt); // This function always implicitly uses dcache_pkt. bool handleWritePacket(); /** * A TimingCPUPort overrides the default behaviour of the * recvTiming and recvRetry and implements events for the * scheduling of handling of incoming packets in the following * cycle. */ class TimingCPUPort : public MasterPort { public: TimingCPUPort(const std::string& _name, TimingSimpleCPU* _cpu) : MasterPort(_name, _cpu), cpu(_cpu), retryEvent(this) { } protected: /** * Snooping a coherence request, do nothing. */ virtual void recvTimingSnoopReq(PacketPtr pkt) {} TimingSimpleCPU* cpu; struct TickEvent : public Event { PacketPtr pkt; TimingSimpleCPU *cpu; TickEvent(TimingSimpleCPU *_cpu) : pkt(NULL), cpu(_cpu) {} const char *description() const { return "Timing CPU tick"; } void schedule(PacketPtr _pkt, Tick t); }; EventWrapper retryEvent; }; class IcachePort : public TimingCPUPort { public: IcachePort(TimingSimpleCPU *_cpu) : TimingCPUPort(_cpu->name() + ".icache_port", _cpu), tickEvent(_cpu) { } protected: virtual bool recvTimingResp(PacketPtr pkt); virtual void recvRetry(); struct ITickEvent : public TickEvent { ITickEvent(TimingSimpleCPU *_cpu) : TickEvent(_cpu) {} void process(); const char *description() const { return "Timing CPU icache tick"; } }; ITickEvent tickEvent; }; class DcachePort : public TimingCPUPort { public: DcachePort(TimingSimpleCPU *_cpu) : TimingCPUPort(_cpu->name() + ".dcache_port", _cpu), tickEvent(_cpu) { cacheBlockMask = ~(cpu->cacheLineSize() - 1); } Addr cacheBlockMask; protected: /** Snoop a coherence request, we need to check if this causes * a wakeup event on a cpu that is monitoring an address */ virtual void recvTimingSnoopReq(PacketPtr pkt); virtual bool recvTimingResp(PacketPtr pkt); virtual void recvRetry(); struct DTickEvent : public TickEvent { DTickEvent(TimingSimpleCPU *_cpu) : TickEvent(_cpu) {} void process(); const char *description() const { return "Timing CPU dcache tick"; } }; DTickEvent tickEvent; }; IcachePort icachePort; DcachePort dcachePort; PacketPtr ifetch_pkt; PacketPtr dcache_pkt; Tick previousCycle; protected: /** Return a reference to the data port. */ virtual MasterPort &getDataPort() { return dcachePort; } /** Return a reference to the instruction port. */ virtual MasterPort &getInstPort() { return icachePort; } public: unsigned int drain(DrainManager *drain_manager); void drainResume(); void switchOut(); void takeOverFrom(BaseCPU *oldCPU); void verifyMemoryMode() const; virtual void activateContext(ThreadID thread_num, Cycles delay); virtual void suspendContext(ThreadID thread_num); Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags); Fault writeMem(uint8_t *data, unsigned size, Addr addr, unsigned flags, uint64_t *res); void fetch(); void sendFetch(Fault fault, RequestPtr req, ThreadContext *tc); void completeIfetch(PacketPtr ); void completeDataAccess(PacketPtr pkt); void advanceInst(Fault fault); /** This function is used by the page table walker to determine if it could * translate the a pending request or if the underlying request has been * squashed. This always returns false for the simple timing CPU as it never * executes any instructions speculatively. * @ return Is the current instruction squashed? */ bool isSquashed() const { return false; } /** * Print state of address in memory system via PrintReq (for * debugging). */ void printAddr(Addr a); /** * Finish a DTB translation. * @param state The DTB translation state. */ void finishTranslation(WholeTranslationState *state); private: typedef EventWrapper FetchEvent; FetchEvent fetchEvent; struct IprEvent : Event { Packet *pkt; TimingSimpleCPU *cpu; IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t); virtual void process(); virtual const char *description() const; }; /** * Check if a system is in a drained state. * * We need to drain if: *
    *
  • We are in the middle of a microcode sequence as some CPUs * (e.g., HW accelerated CPUs) can't be started in the middle * of a gem5 microcode sequence. * *
  • Stay at PC is true. * *
  • A fetch event is scheduled. Normally this would never be the * case with microPC() == 0, but right after a context is * activated it can happen. *
*/ bool isDrained() { return microPC() == 0 && !stayAtPC && !fetchEvent.scheduled(); } /** * Try to complete a drain request. * * @returns true if the CPU is drained, false otherwise. */ bool tryCompleteDrain(); /** * Drain manager to use when signaling drain completion * * This pointer is non-NULL when draining and NULL otherwise. */ DrainManager *drainManager; }; #endif // __CPU_SIMPLE_TIMING_HH__