/* * Copyright (c) 2011-2012, 2016 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2001-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Nathan Binkert */ #ifndef __CPU_SIMPLE_THREAD_HH__ #define __CPU_SIMPLE_THREAD_HH__ #include "arch/decoder.hh" #include "arch/generic/tlb.hh" #include "arch/isa.hh" #include "arch/isa_traits.hh" #include "arch/registers.hh" #include "arch/types.hh" #include "base/types.hh" #include "config/the_isa.hh" #include "cpu/thread_context.hh" #include "cpu/thread_state.hh" #include "debug/CCRegs.hh" #include "debug/FloatRegs.hh" #include "debug/IntRegs.hh" #include "debug/VecRegs.hh" #include "mem/page_table.hh" #include "mem/request.hh" #include "sim/byteswap.hh" #include "sim/eventq.hh" #include "sim/process.hh" #include "sim/serialize.hh" #include "sim/system.hh" class BaseCPU; class CheckerCPU; class FunctionProfile; class ProfileNode; namespace TheISA { namespace Kernel { class Statistics; } } /** * The SimpleThread object provides a combination of the ThreadState * object and the ThreadContext interface. It implements the * ThreadContext interface so that a ProxyThreadContext class can be * made using SimpleThread as the template parameter (see * thread_context.hh). It adds to the ThreadState object by adding all * the objects needed for simple functional execution, including a * simple architectural register file, and pointers to the ITB and DTB * in full system mode. For CPU models that do not need more advanced * ways to hold state (i.e. a separate physical register file, or * separate fetch and commit PC's), this SimpleThread class provides * all the necessary state for full architecture-level functional * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for * examples. */ class SimpleThread : public ThreadState { protected: typedef TheISA::MachInst MachInst; typedef TheISA::MiscReg MiscReg; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::CCReg CCReg; using VecRegContainer = TheISA::VecRegContainer; using VecElem = TheISA::VecElem; public: typedef ThreadContext::Status Status; protected: union { FloatReg f[TheISA::NumFloatRegs]; FloatRegBits i[TheISA::NumFloatRegs]; } floatRegs; TheISA::IntReg intRegs[TheISA::NumIntRegs]; VecRegContainer vecRegs[TheISA::NumVecRegs]; #ifdef ISA_HAS_CC_REGS TheISA::CCReg ccRegs[TheISA::NumCCRegs]; #endif TheISA::ISA *const isa; // one "instance" of the current ISA. TheISA::PCState _pcState; /** Did this instruction execute or is it predicated false */ bool predicate; public: std::string name() const { return csprintf("%s.[tid:%i]", baseCpu->name(), tc->threadId()); } ProxyThreadContext *tc; System *system; BaseTLB *itb; BaseTLB *dtb; TheISA::Decoder decoder; // constructor: initialize SimpleThread from given process structure // FS SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa, bool use_kernel_stats = true); // SE SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, Process *_process, BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa); virtual ~SimpleThread(); virtual void takeOverFrom(ThreadContext *oldContext); void regStats(const std::string &name); void copyState(ThreadContext *oldContext); void serialize(CheckpointOut &cp) const override; void unserialize(CheckpointIn &cp) override; void startup(); /*************************************************************** * SimpleThread functions to provide CPU with access to various * state. **************************************************************/ /** Returns the pointer to this SimpleThread's ThreadContext. Used * when a ThreadContext must be passed to objects outside of the * CPU. */ ThreadContext *getTC() { return tc; } void demapPage(Addr vaddr, uint64_t asn) { itb->demapPage(vaddr, asn); dtb->demapPage(vaddr, asn); } void demapInstPage(Addr vaddr, uint64_t asn) { itb->demapPage(vaddr, asn); } void demapDataPage(Addr vaddr, uint64_t asn) { dtb->demapPage(vaddr, asn); } void dumpFuncProfile(); Fault hwrei(); bool simPalCheck(int palFunc); /******************************************* * ThreadContext interface functions. ******************************************/ BaseCPU *getCpuPtr() { return baseCpu; } BaseTLB *getITBPtr() { return itb; } BaseTLB *getDTBPtr() { return dtb; } CheckerCPU *getCheckerCpuPtr() { return NULL; } TheISA::Decoder *getDecoderPtr() { return &decoder; } System *getSystemPtr() { return system; } Status status() const { return _status; } void setStatus(Status newStatus) { _status = newStatus; } /// Set the status to Active. void activate(); /// Set the status to Suspended. void suspend(); /// Set the status to Halted. void halt(); void copyArchRegs(ThreadContext *tc); void clearArchRegs() { _pcState = 0; memset(intRegs, 0, sizeof(intRegs)); memset(floatRegs.i, 0, sizeof(floatRegs.i)); for (int i = 0; i < TheISA::NumVecRegs; i++) { vecRegs[i].zero(); } #ifdef ISA_HAS_CC_REGS memset(ccRegs, 0, sizeof(ccRegs)); #endif isa->clear(); } // // New accessors for new decoder. // uint64_t readIntReg(int reg_idx) { int flatIndex = isa->flattenIntIndex(reg_idx); assert(flatIndex < TheISA::NumIntRegs); uint64_t regVal(readIntRegFlat(flatIndex)); DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n", reg_idx, flatIndex, regVal); return regVal; } FloatReg readFloatReg(int reg_idx) { int flatIndex = isa->flattenFloatIndex(reg_idx); assert(flatIndex < TheISA::NumFloatRegs); FloatReg regVal(readFloatRegFlat(flatIndex)); DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n", reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]); return regVal; } FloatRegBits readFloatRegBits(int reg_idx) { int flatIndex = isa->flattenFloatIndex(reg_idx); assert(flatIndex < TheISA::NumFloatRegs); FloatRegBits regVal(readFloatRegBitsFlat(flatIndex)); DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n", reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]); return regVal; } const VecRegContainer& readVecReg(const RegId& reg) const { int flatIndex = isa->flattenVecIndex(reg.index()); assert(flatIndex < TheISA::NumVecRegs); const VecRegContainer& regVal = readVecRegFlat(flatIndex); DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n", reg.index(), flatIndex, regVal.as().print()); return regVal; } VecRegContainer& getWritableVecReg(const RegId& reg) { int flatIndex = isa->flattenVecIndex(reg.index()); assert(flatIndex < TheISA::NumVecRegs); VecRegContainer& regVal = getWritableVecRegFlat(flatIndex); DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n", reg.index(), flatIndex, regVal.as().print()); return regVal; } /** Vector Register Lane Interfaces. */ /** @{ */ /** Reads source vector operand. */ template VecLaneT readVecLane(const RegId& reg) const { int flatIndex = isa->flattenVecIndex(reg.index()); assert(flatIndex < TheISA::NumVecRegs); auto regVal = readVecLaneFlat(flatIndex, reg.elemIndex()); DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n", reg.index(), flatIndex, reg.elemIndex(), regVal); return regVal; } /** Reads source vector 8bit operand. */ virtual ConstVecLane8 readVec8BitLaneReg(const RegId& reg) const { return readVecLane(reg); } /** Reads source vector 16bit operand. */ virtual ConstVecLane16 readVec16BitLaneReg(const RegId& reg) const { return readVecLane(reg); } /** Reads source vector 32bit operand. */ virtual ConstVecLane32 readVec32BitLaneReg(const RegId& reg) const { return readVecLane(reg); } /** Reads source vector 64bit operand. */ virtual ConstVecLane64 readVec64BitLaneReg(const RegId& reg) const { return readVecLane(reg); } /** Write a lane of the destination vector register. */ template void setVecLaneT(const RegId& reg, const LD& val) { int flatIndex = isa->flattenVecIndex(reg.index()); assert(flatIndex < TheISA::NumVecRegs); setVecLaneFlat(flatIndex, reg.elemIndex(), val); DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n", reg.index(), flatIndex, reg.elemIndex(), val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneT(reg, val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneT(reg, val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneT(reg, val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return setVecLaneT(reg, val); } /** @} */ const VecElem& readVecElem(const RegId& reg) const { int flatIndex = isa->flattenVecElemIndex(reg.index()); assert(flatIndex < TheISA::NumVecRegs); const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex()); DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as" " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal); return regVal; } CCReg readCCReg(int reg_idx) { #ifdef ISA_HAS_CC_REGS int flatIndex = isa->flattenCCIndex(reg_idx); assert(0 <= flatIndex); assert(flatIndex < TheISA::NumCCRegs); uint64_t regVal(readCCRegFlat(flatIndex)); DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n", reg_idx, flatIndex, regVal); return regVal; #else panic("Tried to read a CC register."); return 0; #endif } void setIntReg(int reg_idx, uint64_t val) { int flatIndex = isa->flattenIntIndex(reg_idx); assert(flatIndex < TheISA::NumIntRegs); DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n", reg_idx, flatIndex, val); setIntRegFlat(flatIndex, val); } void setFloatReg(int reg_idx, FloatReg val) { int flatIndex = isa->flattenFloatIndex(reg_idx); assert(flatIndex < TheISA::NumFloatRegs); setFloatRegFlat(flatIndex, val); DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n", reg_idx, flatIndex, val, floatRegs.i[flatIndex]); } void setFloatRegBits(int reg_idx, FloatRegBits val) { int flatIndex = isa->flattenFloatIndex(reg_idx); assert(flatIndex < TheISA::NumFloatRegs); // XXX: Fix array out of bounds compiler error for gem5.fast // when checkercpu enabled if (flatIndex < TheISA::NumFloatRegs) setFloatRegBitsFlat(flatIndex, val); DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n", reg_idx, flatIndex, val, floatRegs.f[flatIndex]); } void setVecReg(const RegId& reg, const VecRegContainer& val) { int flatIndex = isa->flattenVecIndex(reg.index()); assert(flatIndex < TheISA::NumVecRegs); setVecRegFlat(flatIndex, val); DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n", reg.index(), flatIndex, val.print()); } void setVecElem(const RegId& reg, const VecElem& val) { int flatIndex = isa->flattenVecElemIndex(reg.index()); assert(flatIndex < TheISA::NumVecRegs); setVecElemFlat(flatIndex, reg.elemIndex(), val); DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to" " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val); } void setCCReg(int reg_idx, CCReg val) { #ifdef ISA_HAS_CC_REGS int flatIndex = isa->flattenCCIndex(reg_idx); assert(flatIndex < TheISA::NumCCRegs); DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n", reg_idx, flatIndex, val); setCCRegFlat(flatIndex, val); #else panic("Tried to set a CC register."); #endif } TheISA::PCState pcState() { return _pcState; } void pcState(const TheISA::PCState &val) { _pcState = val; } void pcStateNoRecord(const TheISA::PCState &val) { _pcState = val; } Addr instAddr() { return _pcState.instAddr(); } Addr nextInstAddr() { return _pcState.nextInstAddr(); } void setNPC(Addr val) { _pcState.setNPC(val); } MicroPC microPC() { return _pcState.microPC(); } bool readPredicate() { return predicate; } void setPredicate(bool val) { predicate = val; } MiscReg readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) const { return isa->readMiscRegNoEffect(misc_reg); } MiscReg readMiscReg(int misc_reg, ThreadID tid = 0) { return isa->readMiscReg(misc_reg, tc); } void setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0) { return isa->setMiscRegNoEffect(misc_reg, val); } void setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0) { return isa->setMiscReg(misc_reg, val, tc); } RegId flattenRegId(const RegId& regId) const { return isa->flattenRegId(regId); } unsigned readStCondFailures() { return storeCondFailures; } void setStCondFailures(unsigned sc_failures) { storeCondFailures = sc_failures; } void syscall(int64_t callnum, Fault *fault) { process->syscall(callnum, tc, fault); } uint64_t readIntRegFlat(int idx) { return intRegs[idx]; } void setIntRegFlat(int idx, uint64_t val) { intRegs[idx] = val; } FloatReg readFloatRegFlat(int idx) { return floatRegs.f[idx]; } void setFloatRegFlat(int idx, FloatReg val) { floatRegs.f[idx] = val; } FloatRegBits readFloatRegBitsFlat(int idx) { return floatRegs.i[idx]; } void setFloatRegBitsFlat(int idx, FloatRegBits val) { floatRegs.i[idx] = val; } const VecRegContainer& readVecRegFlat(const RegIndex& reg) const { return vecRegs[reg]; } VecRegContainer& getWritableVecRegFlat(const RegIndex& reg) { return vecRegs[reg]; } void setVecRegFlat(const RegIndex& reg, const VecRegContainer& val) { vecRegs[reg] = val; } template VecLaneT readVecLaneFlat(const RegIndex& reg, int lId) const { return vecRegs[reg].laneView(lId); } template void setVecLaneFlat(const RegIndex& reg, int lId, const LD& val) { vecRegs[reg].laneView(lId) = val; } const VecElem& readVecElemFlat(const RegIndex& reg, const ElemIndex& elemIndex) const { return vecRegs[reg].as()[elemIndex]; } void setVecElemFlat(const RegIndex& reg, const ElemIndex& elemIndex, const VecElem val) { vecRegs[reg].as()[elemIndex] = val; } #ifdef ISA_HAS_CC_REGS CCReg readCCRegFlat(int idx) { return ccRegs[idx]; } void setCCRegFlat(int idx, CCReg val) { ccRegs[idx] = val; } #else CCReg readCCRegFlat(int idx) { panic("readCCRegFlat w/no CC regs!\n"); } void setCCRegFlat(int idx, CCReg val) { panic("setCCRegFlat w/no CC regs!\n"); } #endif }; #endif // __CPU_CPU_EXEC_CONTEXT_HH__