/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * Copyright (c) 2009 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu/testers/rubytest/Check.hh" #include "base/random.hh" #include "base/trace.hh" #include "debug/RubyTest.hh" #include "mem/ruby/common/SubBlock.hh" typedef RubyTester::SenderState SenderState; Check::Check(Addr address, Addr pc, int _num_writers, int _num_readers, RubyTester* _tester) : m_num_writers(_num_writers), m_num_readers(_num_readers), m_tester_ptr(_tester) { m_status = TesterStatus_Idle; pickValue(); pickInitiatingNode(); changeAddress(address); m_pc = pc; m_access_mode = RubyAccessMode(random_mt.random(0, RubyAccessMode_NUM - 1)); m_store_count = 0; } void Check::initiate() { DPRINTF(RubyTest, "initiating\n"); debugPrint(); // currently no protocols support prefetches if (false && (random_mt.random(0, 0xf) == 0)) { initiatePrefetch(); // Prefetch from random processor } if (m_tester_ptr->getCheckFlush() && (random_mt.random(0, 0xff) == 0)) { initiateFlush(); // issue a Flush request from random processor } if (m_status == TesterStatus_Idle) { initiateAction(); } else if (m_status == TesterStatus_Ready) { initiateCheck(); } else { // Pending - do nothing DPRINTF(RubyTest, "initiating action/check - failed: action/check is pending\n"); } } void Check::initiatePrefetch() { DPRINTF(RubyTest, "initiating prefetch\n"); int index = random_mt.random(0, m_num_readers - 1); MasterPort* port = m_tester_ptr->getReadableCpuPort(index); Request::Flags flags; flags.set(Request::PREFETCH); Packet::Command cmd; // 1 in 8 chance this will be an exclusive prefetch if (random_mt.random(0, 0x7) != 0) { cmd = MemCmd::ReadReq; // if necessary, make the request an instruction fetch if (m_tester_ptr->isInstOnlyCpuPort(index) || (m_tester_ptr->isInstDataCpuPort(index) && (random_mt.random(0, 0x1)))) { flags.set(Request::INST_FETCH); } } else { cmd = MemCmd::WriteReq; flags.set(Request::PF_EXCLUSIVE); } // Prefetches are assumed to be 0 sized RequestPtr req = new Request(m_address, 0, flags, m_tester_ptr->masterId(), curTick(), m_pc); req->setContext(index); PacketPtr pkt = new Packet(req, cmd); // despite the oddity of the 0 size (questionable if this should // even be allowed), a prefetch is still a read and as such needs // a place to store the result uint8_t *data = new uint8_t[1]; pkt->dataDynamic(data); // push the subblock onto the sender state. The sequencer will // update the subblock on the return pkt->senderState = new SenderState(m_address, req->getSize()); if (port->sendTimingReq(pkt)) { DPRINTF(RubyTest, "successfully initiated prefetch.\n"); } else { // If the packet did not issue, must delete delete pkt->senderState; delete pkt->req; delete pkt; DPRINTF(RubyTest, "prefetch initiation failed because Port was busy.\n"); } } void Check::initiateFlush() { DPRINTF(RubyTest, "initiating Flush\n"); int index = random_mt.random(0, m_num_writers - 1); MasterPort* port = m_tester_ptr->getWritableCpuPort(index); Request::Flags flags; RequestPtr req = new Request(m_address, CHECK_SIZE, flags, m_tester_ptr->masterId(), curTick(), m_pc); Packet::Command cmd; cmd = MemCmd::FlushReq; PacketPtr pkt = new Packet(req, cmd); // push the subblock onto the sender state. The sequencer will // update the subblock on the return pkt->senderState = new SenderState(m_address, req->getSize()); if (port->sendTimingReq(pkt)) { DPRINTF(RubyTest, "initiating Flush - successful\n"); } } void Check::initiateAction() { DPRINTF(RubyTest, "initiating Action\n"); assert(m_status == TesterStatus_Idle); int index = random_mt.random(0, m_num_writers - 1); MasterPort* port = m_tester_ptr->getWritableCpuPort(index); Request::Flags flags; // Create the particular address for the next byte to be written Addr writeAddr(m_address + m_store_count); // Stores are assumed to be 1 byte-sized RequestPtr req = new Request(writeAddr, 1, flags, m_tester_ptr->masterId(), curTick(), m_pc); req->setContext(index); Packet::Command cmd; // 1 out of 8 chance, issue an atomic rather than a write // if ((random() & 0x7) == 0) { // cmd = MemCmd::SwapReq; // } else { cmd = MemCmd::WriteReq; // } PacketPtr pkt = new Packet(req, cmd); uint8_t *writeData = new uint8_t[1]; *writeData = m_value + m_store_count; pkt->dataDynamic(writeData); DPRINTF(RubyTest, "Seq write: index %d data 0x%x check 0x%x\n", index, *(pkt->getConstPtr()), *writeData); // push the subblock onto the sender state. The sequencer will // update the subblock on the return pkt->senderState = new SenderState(writeAddr, req->getSize()); if (port->sendTimingReq(pkt)) { DPRINTF(RubyTest, "initiating action - successful\n"); DPRINTF(RubyTest, "status before action update: %s\n", (TesterStatus_to_string(m_status)).c_str()); m_status = TesterStatus_Action_Pending; DPRINTF(RubyTest, "Check %#x, State=Action_Pending\n", m_address); } else { // If the packet did not issue, must delete // Note: No need to delete the data, the packet destructor // will delete it delete pkt->senderState; delete pkt->req; delete pkt; DPRINTF(RubyTest, "failed to initiate action - sequencer not ready\n"); } DPRINTF(RubyTest, "status after action update: %s\n", (TesterStatus_to_string(m_status)).c_str()); } void Check::initiateCheck() { DPRINTF(RubyTest, "Initiating Check\n"); assert(m_status == TesterStatus_Ready); int index = random_mt.random(0, m_num_readers - 1); MasterPort* port = m_tester_ptr->getReadableCpuPort(index); Request::Flags flags; // If necessary, make the request an instruction fetch if (m_tester_ptr->isInstOnlyCpuPort(index) || (m_tester_ptr->isInstDataCpuPort(index) && (random_mt.random(0, 0x1)))) { flags.set(Request::INST_FETCH); } // Checks are sized depending on the number of bytes written RequestPtr req = new Request(m_address, CHECK_SIZE, flags, m_tester_ptr->masterId(), curTick(), m_pc); req->setContext(index); PacketPtr pkt = new Packet(req, MemCmd::ReadReq); uint8_t *dataArray = new uint8_t[CHECK_SIZE]; pkt->dataDynamic(dataArray); DPRINTF(RubyTest, "Seq read: index %d\n", index); // push the subblock onto the sender state. The sequencer will // update the subblock on the return pkt->senderState = new SenderState(m_address, req->getSize()); if (port->sendTimingReq(pkt)) { DPRINTF(RubyTest, "initiating check - successful\n"); DPRINTF(RubyTest, "status before check update: %s\n", TesterStatus_to_string(m_status).c_str()); m_status = TesterStatus_Check_Pending; DPRINTF(RubyTest, "Check %#x, State=Check_Pending\n", m_address); } else { // If the packet did not issue, must delete // Note: No need to delete the data, the packet destructor // will delete it delete pkt->senderState; delete pkt->req; delete pkt; DPRINTF(RubyTest, "failed to initiate check - cpu port not ready\n"); } DPRINTF(RubyTest, "status after check update: %s\n", TesterStatus_to_string(m_status).c_str()); } void Check::performCallback(NodeID proc, SubBlock* data, Cycles curTime) { Addr address = data->getAddress(); // This isn't exactly right since we now have multi-byte checks // assert(getAddress() == address); assert(makeLineAddress(m_address) == makeLineAddress(address)); assert(data != NULL); DPRINTF(RubyTest, "RubyTester Callback\n"); debugPrint(); if (m_status == TesterStatus_Action_Pending) { DPRINTF(RubyTest, "Action callback write value: %d, currently %d\n", (m_value + m_store_count), data->getByte(0)); // Perform store one byte at a time data->setByte(0, (m_value + m_store_count)); m_store_count++; if (m_store_count == CHECK_SIZE) { m_status = TesterStatus_Ready; DPRINTF(RubyTest, "Check %#x, State=Ready\n", m_address); } else { m_status = TesterStatus_Idle; DPRINTF(RubyTest, "Check %#x, State=Idle store_count: %d\n", m_address, m_store_count); } DPRINTF(RubyTest, "Action callback return data now %d\n", data->getByte(0)); } else if (m_status == TesterStatus_Check_Pending) { DPRINTF(RubyTest, "Check callback\n"); // Perform load/check for (int byte_number=0; byte_numbergetByte(byte_number)) { panic("Action/check failure: proc: %d address: %#x data: %s " "byte_number: %d m_value+byte_number: %d byte: %d %s" "Time: %d\n", proc, address, data, byte_number, (int)m_value + byte_number, (int)data->getByte(byte_number), *this, curTime); } } DPRINTF(RubyTest, "Action/check success\n"); debugPrint(); // successful check complete, increment complete m_tester_ptr->incrementCheckCompletions(); m_status = TesterStatus_Idle; DPRINTF(RubyTest, "Check %#x, State=Idle\n", m_address); pickValue(); } else { panic("Unexpected TesterStatus: %s proc: %d data: %s m_status: %s " "time: %d\n", *this, proc, data, m_status, curTime); } DPRINTF(RubyTest, "proc: %d, Address: 0x%x\n", proc, makeLineAddress(m_address)); DPRINTF(RubyTest, "Callback done\n"); debugPrint(); } void Check::changeAddress(Addr address) { assert(m_status == TesterStatus_Idle || m_status == TesterStatus_Ready); m_status = TesterStatus_Idle; m_address = address; DPRINTF(RubyTest, "Check %#x, State=Idle\n", m_address); m_store_count = 0; } void Check::pickValue() { assert(m_status == TesterStatus_Idle); m_value = random_mt.random(0, 0xff); // One byte m_store_count = 0; } void Check::pickInitiatingNode() { assert(m_status == TesterStatus_Idle || m_status == TesterStatus_Ready); m_status = TesterStatus_Idle; m_initiatingNode = (random_mt.random(0, m_num_writers - 1)); DPRINTF(RubyTest, "Check %#x, State=Idle, picked initiating node %d\n", m_address, m_initiatingNode); m_store_count = 0; } void Check::print(std::ostream& out) const { out << "[" << m_address << ", value: " << (int)m_value << ", status: " << m_status << ", initiating node: " << m_initiatingNode << ", store_count: " << m_store_count << "]" << std::flush; } void Check::debugPrint() { DPRINTF(RubyTest, "[%#x, value: %d, status: %s, initiating node: %d, store_count: %d]\n", m_address, (int)m_value, TesterStatus_to_string(m_status).c_str(), m_initiatingNode, m_store_count); }