/* * Copyright (c) 2012-2013 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * Copyright (c) 2009 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu/testers/rubytest/RubyTester.hh" #include "base/logging.hh" #include "base/trace.hh" #include "cpu/testers/rubytest/Check.hh" #include "debug/RubyTest.hh" #include "mem/ruby/common/SubBlock.hh" #include "sim/sim_exit.hh" #include "sim/system.hh" RubyTester::RubyTester(const Params *p) : MemObject(p), checkStartEvent([this]{ wakeup(); }, "RubyTester tick", false, Event::CPU_Tick_Pri), _masterId(p->system->getMasterId(this)), m_checkTable_ptr(nullptr), m_num_cpus(p->num_cpus), m_checks_to_complete(p->checks_to_complete), m_deadlock_threshold(p->deadlock_threshold), m_num_writers(0), m_num_readers(0), m_wakeup_frequency(p->wakeup_frequency), m_check_flush(p->check_flush), m_num_inst_only_ports(p->port_cpuInstPort_connection_count), m_num_inst_data_ports(p->port_cpuInstDataPort_connection_count) { m_checks_completed = 0; // // Create the requested inst and data ports and place them on the // appropriate read and write port lists. The reason for the subtle // difference between inst and data ports vs. read and write ports is // from the tester's perspective, it only needs to know whether a port // supports reads (checks) or writes (actions). Meanwhile, the protocol // controllers have data ports (support read and writes) or inst ports // (support only reads). // Note: the inst ports are the lowest elements of the readPort vector, // then the data ports are added to the readPort vector // int idx = 0; for (int i = 0; i < p->port_cpuInstPort_connection_count; ++i) { readPorts.push_back(new CpuPort(csprintf("%s-instPort%d", name(), i), this, i, idx)); idx++; } for (int i = 0; i < p->port_cpuInstDataPort_connection_count; ++i) { CpuPort *port = new CpuPort(csprintf("%s-instDataPort%d", name(), i), this, i, idx); readPorts.push_back(port); writePorts.push_back(port); idx++; } for (int i = 0; i < p->port_cpuDataPort_connection_count; ++i) { CpuPort *port = new CpuPort(csprintf("%s-dataPort%d", name(), i), this, i, idx); readPorts.push_back(port); writePorts.push_back(port); idx++; } // add the check start event to the event queue schedule(checkStartEvent, 1); } RubyTester::~RubyTester() { delete m_checkTable_ptr; // Only delete the readPorts since the writePorts are just a subset for (int i = 0; i < readPorts.size(); i++) delete readPorts[i]; } void RubyTester::init() { assert(writePorts.size() > 0 && readPorts.size() > 0); m_last_progress_vector.resize(m_num_cpus); for (int i = 0; i < m_last_progress_vector.size(); i++) { m_last_progress_vector[i] = Cycles(0); } m_num_writers = writePorts.size(); m_num_readers = readPorts.size(); assert(m_num_readers == m_num_cpus); m_checkTable_ptr = new CheckTable(m_num_writers, m_num_readers, this); } BaseMasterPort & RubyTester::getMasterPort(const std::string &if_name, PortID idx) { if (if_name != "cpuInstPort" && if_name != "cpuInstDataPort" && if_name != "cpuDataPort") { // pass it along to our super class return MemObject::getMasterPort(if_name, idx); } else { if (if_name == "cpuInstPort") { if (idx > m_num_inst_only_ports) { panic("RubyTester::getMasterPort: unknown inst port %d\n", idx); } // // inst ports map to the lowest readPort elements // return *readPorts[idx]; } else if (if_name == "cpuInstDataPort") { if (idx > m_num_inst_data_ports) { panic("RubyTester::getMasterPort: unknown inst+data port %d\n", idx); } int read_idx = idx + m_num_inst_only_ports; // // inst+data ports map to the next readPort elements // return *readPorts[read_idx]; } else { assert(if_name == "cpuDataPort"); // // data only ports map to the final readPort elements // if (idx > (static_cast(readPorts.size()) - (m_num_inst_only_ports + m_num_inst_data_ports))) { panic("RubyTester::getMasterPort: unknown data port %d\n", idx); } int read_idx = idx + m_num_inst_only_ports + m_num_inst_data_ports; return *readPorts[read_idx]; } // Note: currently the Ruby Tester does not support write only ports // but that could easily be added here } } bool RubyTester::CpuPort::recvTimingResp(PacketPtr pkt) { // retrieve the subblock and call hitCallback RubyTester::SenderState* senderState = safe_cast(pkt->senderState); SubBlock& subblock = senderState->subBlock; tester->hitCallback(globalIdx, &subblock); // Now that the tester has completed, delete the senderState // (includes sublock) and the packet, then return delete pkt->senderState; delete pkt; return true; } bool RubyTester::isInstOnlyCpuPort(int idx) { return idx < m_num_inst_only_ports; } bool RubyTester::isInstDataCpuPort(int idx) { return ((idx >= m_num_inst_only_ports) && (idx < (m_num_inst_only_ports + m_num_inst_data_ports))); } MasterPort* RubyTester::getReadableCpuPort(int idx) { assert(idx >= 0 && idx < readPorts.size()); return readPorts[idx]; } MasterPort* RubyTester::getWritableCpuPort(int idx) { assert(idx >= 0 && idx < writePorts.size()); return writePorts[idx]; } void RubyTester::hitCallback(NodeID proc, SubBlock* data) { // Mark that we made progress m_last_progress_vector[proc] = curCycle(); DPRINTF(RubyTest, "completed request for proc: %d", proc); DPRINTFR(RubyTest, " addr: 0x%x, size: %d, data: ", data->getAddress(), data->getSize()); for (int byte = 0; byte < data->getSize(); byte++) { DPRINTFR(RubyTest, "%d ", data->getByte(byte)); } DPRINTFR(RubyTest, "\n"); // This tells us our store has 'completed' or for a load gives us // back the data to make the check Check* check_ptr = m_checkTable_ptr->getCheck(data->getAddress()); assert(check_ptr != NULL); check_ptr->performCallback(proc, data, curCycle()); } void RubyTester::wakeup() { if (m_checks_completed < m_checks_to_complete) { // Try to perform an action or check Check* check_ptr = m_checkTable_ptr->getRandomCheck(); assert(check_ptr != NULL); check_ptr->initiate(); checkForDeadlock(); schedule(checkStartEvent, curTick() + m_wakeup_frequency); } else { exitSimLoop("Ruby Tester completed"); } } void RubyTester::checkForDeadlock() { int size = m_last_progress_vector.size(); Cycles current_time = curCycle(); for (int processor = 0; processor < size; processor++) { if ((current_time - m_last_progress_vector[processor]) > m_deadlock_threshold) { panic("Deadlock detected: current_time: %d last_progress_time: %d " "difference: %d processor: %d\n", current_time, m_last_progress_vector[processor], current_time - m_last_progress_vector[processor], processor); } } } void RubyTester::print(std::ostream& out) const { out << "[RubyTester]" << std::endl; } RubyTester * RubyTesterParams::create() { return new RubyTester(this); }