/* * Copyright (c) 2011-2012, 2016 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_THREAD_CONTEXT_HH__ #define __CPU_THREAD_CONTEXT_HH__ #include #include #include "arch/registers.hh" #include "arch/types.hh" #include "base/types.hh" #include "config/the_isa.hh" #include "cpu/reg_class.hh" // @todo: Figure out a more architecture independent way to obtain the ITB and // DTB pointers. namespace TheISA { class Decoder; } class BaseCPU; class BaseTLB; class CheckerCPU; class Checkpoint; class EndQuiesceEvent; class SETranslatingPortProxy; class FSTranslatingPortProxy; class PortProxy; class Process; class System; namespace TheISA { namespace Kernel { class Statistics; } } /** * ThreadContext is the external interface to all thread state for * anything outside of the CPU. It provides all accessor methods to * state that might be needed by external objects, ranging from * register values to things such as kernel stats. It is an abstract * base class; the CPU can create its own ThreadContext by either * deriving from it, or using the templated ProxyThreadContext. * * The ThreadContext is slightly different than the ExecContext. The * ThreadContext provides access to an individual thread's state; an * ExecContext provides ISA access to the CPU (meaning it is * implicitly multithreaded on SMT systems). Additionally the * ThreadState is an abstract class that exactly defines the * interface; the ExecContext is a more implicit interface that must * be implemented so that the ISA can access whatever state it needs. */ class ThreadContext { protected: typedef TheISA::MachInst MachInst; typedef TheISA::IntReg IntReg; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::CCReg CCReg; typedef TheISA::MiscReg MiscReg; using VecRegContainer = TheISA::VecRegContainer; using VecElem = TheISA::VecElem; public: enum Status { /// Running. Instructions should be executed only when /// the context is in this state. Active, /// Temporarily inactive. Entered while waiting for /// synchronization, etc. Suspended, /// Permanently shut down. Entered when target executes /// m5exit pseudo-instruction. When all contexts enter /// this state, the simulation will terminate. Halted }; virtual ~ThreadContext() { }; virtual BaseCPU *getCpuPtr() = 0; virtual int cpuId() const = 0; virtual uint32_t socketId() const = 0; virtual int threadId() const = 0; virtual void setThreadId(int id) = 0; virtual int contextId() const = 0; virtual void setContextId(int id) = 0; virtual BaseTLB *getITBPtr() = 0; virtual BaseTLB *getDTBPtr() = 0; virtual CheckerCPU *getCheckerCpuPtr() = 0; virtual TheISA::Decoder *getDecoderPtr() = 0; virtual System *getSystemPtr() = 0; virtual TheISA::Kernel::Statistics *getKernelStats() = 0; virtual PortProxy &getPhysProxy() = 0; virtual FSTranslatingPortProxy &getVirtProxy() = 0; /** * Initialise the physical and virtual port proxies and tie them to * the data port of the CPU. * * tc ThreadContext for the virtual-to-physical translation */ virtual void initMemProxies(ThreadContext *tc) = 0; virtual SETranslatingPortProxy &getMemProxy() = 0; virtual Process *getProcessPtr() = 0; virtual void setProcessPtr(Process *p) = 0; virtual Status status() const = 0; virtual void setStatus(Status new_status) = 0; /// Set the status to Active. virtual void activate() = 0; /// Set the status to Suspended. virtual void suspend() = 0; /// Set the status to Halted. virtual void halt() = 0; /// Quiesce thread context void quiesce(); /// Quiesce, suspend, and schedule activate at resume void quiesceTick(Tick resume); virtual void dumpFuncProfile() = 0; virtual void takeOverFrom(ThreadContext *old_context) = 0; virtual void regStats(const std::string &name) = 0; virtual EndQuiesceEvent *getQuiesceEvent() = 0; // Not necessarily the best location for these... // Having an extra function just to read these is obnoxious virtual Tick readLastActivate() = 0; virtual Tick readLastSuspend() = 0; virtual void profileClear() = 0; virtual void profileSample() = 0; virtual void copyArchRegs(ThreadContext *tc) = 0; virtual void clearArchRegs() = 0; // // New accessors for new decoder. // virtual uint64_t readIntReg(int reg_idx) = 0; virtual FloatReg readFloatReg(int reg_idx) = 0; virtual FloatRegBits readFloatRegBits(int reg_idx) = 0; virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0; virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0; /** Vector Register Lane Interfaces. */ /** @{ */ /** Reads source vector 8bit operand. */ virtual ConstVecLane8 readVec8BitLaneReg(const RegId& reg) const = 0; /** Reads source vector 16bit operand. */ virtual ConstVecLane16 readVec16BitLaneReg(const RegId& reg) const = 0; /** Reads source vector 32bit operand. */ virtual ConstVecLane32 readVec32BitLaneReg(const RegId& reg) const = 0; /** Reads source vector 64bit operand. */ virtual ConstVecLane64 readVec64BitLaneReg(const RegId& reg) const = 0; /** Write a lane of the destination vector register. */ virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; virtual void setVecLane(const RegId& reg, const LaneData& val) = 0; /** @} */ virtual const VecElem& readVecElem(const RegId& reg) const = 0; virtual CCReg readCCReg(int reg_idx) = 0; virtual void setIntReg(int reg_idx, uint64_t val) = 0; virtual void setFloatReg(int reg_idx, FloatReg val) = 0; virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0; virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0; virtual void setVecElem(const RegId& reg, const VecElem& val) = 0; virtual void setCCReg(int reg_idx, CCReg val) = 0; virtual TheISA::PCState pcState() = 0; virtual void pcState(const TheISA::PCState &val) = 0; void setNPC(Addr val) { TheISA::PCState pc_state = pcState(); pc_state.setNPC(val); pcState(pc_state); } virtual void pcStateNoRecord(const TheISA::PCState &val) = 0; virtual Addr instAddr() = 0; virtual Addr nextInstAddr() = 0; virtual MicroPC microPC() = 0; virtual MiscReg readMiscRegNoEffect(int misc_reg) const = 0; virtual MiscReg readMiscReg(int misc_reg) = 0; virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0; virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0; virtual RegId flattenRegId(const RegId& regId) const = 0; virtual uint64_t readRegOtherThread(const RegId& misc_reg, ThreadID tid) { return 0; } virtual void setRegOtherThread(const RegId& misc_reg, const MiscReg &val, ThreadID tid) { } // Also not necessarily the best location for these two. Hopefully will go // away once we decide upon where st cond failures goes. virtual unsigned readStCondFailures() = 0; virtual void setStCondFailures(unsigned sc_failures) = 0; // Same with st cond failures. virtual Counter readFuncExeInst() = 0; virtual void syscall(int64_t callnum, Fault *fault) = 0; // This function exits the thread context in the CPU and returns // 1 if the CPU has no more active threads (meaning it's OK to exit); // Used in syscall-emulation mode when a thread calls the exit syscall. virtual int exit() { return 1; }; /** function to compare two thread contexts (for debugging) */ static void compare(ThreadContext *one, ThreadContext *two); /** @{ */ /** * Flat register interfaces * * Some architectures have different registers visible in * different modes. Such architectures "flatten" a register (see * flattenRegId()) to map it into the * gem5 register file. This interface provides a flat interface to * the underlying register file, which allows for example * serialization code to access all registers. */ virtual uint64_t readIntRegFlat(int idx) = 0; virtual void setIntRegFlat(int idx, uint64_t val) = 0; virtual FloatReg readFloatRegFlat(int idx) = 0; virtual void setFloatRegFlat(int idx, FloatReg val) = 0; virtual FloatRegBits readFloatRegBitsFlat(int idx) = 0; virtual void setFloatRegBitsFlat(int idx, FloatRegBits val) = 0; virtual const VecRegContainer& readVecRegFlat(int idx) const = 0; virtual VecRegContainer& getWritableVecRegFlat(int idx) = 0; virtual void setVecRegFlat(int idx, const VecRegContainer& val) = 0; virtual const VecElem& readVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx) const = 0; virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx, const VecElem& val) = 0; virtual CCReg readCCRegFlat(int idx) = 0; virtual void setCCRegFlat(int idx, CCReg val) = 0; /** @} */ }; /** * ProxyThreadContext class that provides a way to implement a * ThreadContext without having to derive from it. ThreadContext is an * abstract class, so anything that derives from it and uses its * interface will pay the overhead of virtual function calls. This * class is created to enable a user-defined Thread object to be used * wherever ThreadContexts are used, without paying the overhead of * virtual function calls when it is used by itself. See * simple_thread.hh for an example of this. */ template class ProxyThreadContext : public ThreadContext { public: ProxyThreadContext(TC *actual_tc) { actualTC = actual_tc; } private: TC *actualTC; public: BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); } int cpuId() const { return actualTC->cpuId(); } uint32_t socketId() const { return actualTC->socketId(); } int threadId() const { return actualTC->threadId(); } void setThreadId(int id) { actualTC->setThreadId(id); } int contextId() const { return actualTC->contextId(); } void setContextId(int id) { actualTC->setContextId(id); } BaseTLB *getITBPtr() { return actualTC->getITBPtr(); } BaseTLB *getDTBPtr() { return actualTC->getDTBPtr(); } CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); } TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); } System *getSystemPtr() { return actualTC->getSystemPtr(); } TheISA::Kernel::Statistics *getKernelStats() { return actualTC->getKernelStats(); } PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); } FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); } void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); } SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); } Process *getProcessPtr() { return actualTC->getProcessPtr(); } void setProcessPtr(Process *p) { actualTC->setProcessPtr(p); } Status status() const { return actualTC->status(); } void setStatus(Status new_status) { actualTC->setStatus(new_status); } /// Set the status to Active. void activate() { actualTC->activate(); } /// Set the status to Suspended. void suspend() { actualTC->suspend(); } /// Set the status to Halted. void halt() { actualTC->halt(); } /// Quiesce thread context void quiesce() { actualTC->quiesce(); } /// Quiesce, suspend, and schedule activate at resume void quiesceTick(Tick resume) { actualTC->quiesceTick(resume); } void dumpFuncProfile() { actualTC->dumpFuncProfile(); } void takeOverFrom(ThreadContext *oldContext) { actualTC->takeOverFrom(oldContext); } void regStats(const std::string &name) { actualTC->regStats(name); } EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); } Tick readLastActivate() { return actualTC->readLastActivate(); } Tick readLastSuspend() { return actualTC->readLastSuspend(); } void profileClear() { return actualTC->profileClear(); } void profileSample() { return actualTC->profileSample(); } // @todo: Do I need this? void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); } void clearArchRegs() { actualTC->clearArchRegs(); } // // New accessors for new decoder. // uint64_t readIntReg(int reg_idx) { return actualTC->readIntReg(reg_idx); } FloatReg readFloatReg(int reg_idx) { return actualTC->readFloatReg(reg_idx); } FloatRegBits readFloatRegBits(int reg_idx) { return actualTC->readFloatRegBits(reg_idx); } const VecRegContainer& readVecReg(const RegId& reg) const { return actualTC->readVecReg(reg); } VecRegContainer& getWritableVecReg(const RegId& reg) { return actualTC->getWritableVecReg(reg); } /** Vector Register Lane Interfaces. */ /** @{ */ /** Reads source vector 8bit operand. */ ConstVecLane8 readVec8BitLaneReg(const RegId& reg) const { return actualTC->readVec8BitLaneReg(reg); } /** Reads source vector 16bit operand. */ ConstVecLane16 readVec16BitLaneReg(const RegId& reg) const { return actualTC->readVec16BitLaneReg(reg); } /** Reads source vector 32bit operand. */ ConstVecLane32 readVec32BitLaneReg(const RegId& reg) const { return actualTC->readVec32BitLaneReg(reg); } /** Reads source vector 64bit operand. */ ConstVecLane64 readVec64BitLaneReg(const RegId& reg) const { return actualTC->readVec64BitLaneReg(reg); } /** Write a lane of the destination vector register. */ virtual void setVecLane(const RegId& reg, const LaneData& val) { return actualTC->setVecLane(reg, val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return actualTC->setVecLane(reg, val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return actualTC->setVecLane(reg, val); } virtual void setVecLane(const RegId& reg, const LaneData& val) { return actualTC->setVecLane(reg, val); } /** @} */ const VecElem& readVecElem(const RegId& reg) const { return actualTC->readVecElem(reg); } CCReg readCCReg(int reg_idx) { return actualTC->readCCReg(reg_idx); } void setIntReg(int reg_idx, uint64_t val) { actualTC->setIntReg(reg_idx, val); } void setFloatReg(int reg_idx, FloatReg val) { actualTC->setFloatReg(reg_idx, val); } void setFloatRegBits(int reg_idx, FloatRegBits val) { actualTC->setFloatRegBits(reg_idx, val); } void setVecReg(const RegId& reg, const VecRegContainer& val) { actualTC->setVecReg(reg, val); } void setVecElem(const RegId& reg, const VecElem& val) { actualTC->setVecElem(reg, val); } void setCCReg(int reg_idx, CCReg val) { actualTC->setCCReg(reg_idx, val); } TheISA::PCState pcState() { return actualTC->pcState(); } void pcState(const TheISA::PCState &val) { actualTC->pcState(val); } void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); } Addr instAddr() { return actualTC->instAddr(); } Addr nextInstAddr() { return actualTC->nextInstAddr(); } MicroPC microPC() { return actualTC->microPC(); } bool readPredicate() { return actualTC->readPredicate(); } void setPredicate(bool val) { actualTC->setPredicate(val); } MiscReg readMiscRegNoEffect(int misc_reg) const { return actualTC->readMiscRegNoEffect(misc_reg); } MiscReg readMiscReg(int misc_reg) { return actualTC->readMiscReg(misc_reg); } void setMiscRegNoEffect(int misc_reg, const MiscReg &val) { return actualTC->setMiscRegNoEffect(misc_reg, val); } void setMiscReg(int misc_reg, const MiscReg &val) { return actualTC->setMiscReg(misc_reg, val); } RegId flattenRegId(const RegId& regId) const { return actualTC->flattenRegId(regId); } unsigned readStCondFailures() { return actualTC->readStCondFailures(); } void setStCondFailures(unsigned sc_failures) { actualTC->setStCondFailures(sc_failures); } void syscall(int64_t callnum, Fault *fault) { actualTC->syscall(callnum, fault); } Counter readFuncExeInst() { return actualTC->readFuncExeInst(); } uint64_t readIntRegFlat(int idx) { return actualTC->readIntRegFlat(idx); } void setIntRegFlat(int idx, uint64_t val) { actualTC->setIntRegFlat(idx, val); } FloatReg readFloatRegFlat(int idx) { return actualTC->readFloatRegFlat(idx); } void setFloatRegFlat(int idx, FloatReg val) { actualTC->setFloatRegFlat(idx, val); } FloatRegBits readFloatRegBitsFlat(int idx) { return actualTC->readFloatRegBitsFlat(idx); } void setFloatRegBitsFlat(int idx, FloatRegBits val) { actualTC->setFloatRegBitsFlat(idx, val); } const VecRegContainer& readVecRegFlat(int id) const { return actualTC->readVecRegFlat(id); } VecRegContainer& getWritableVecRegFlat(int id) { return actualTC->getWritableVecRegFlat(id); } void setVecRegFlat(int idx, const VecRegContainer& val) { actualTC->setVecRegFlat(idx, val); } const VecElem& readVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex) const { return actualTC->readVecElemFlat(id, elemIndex); } void setVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex, const VecElem& val) { actualTC->setVecElemFlat(id, elemIndex, val); } CCReg readCCRegFlat(int idx) { return actualTC->readCCRegFlat(idx); } void setCCRegFlat(int idx, CCReg val) { actualTC->setCCRegFlat(idx, val); } }; /** @{ */ /** * Thread context serialization helpers * * These helper functions provide a way to the data in a * ThreadContext. They are provided as separate helper function since * implementing them as members of the ThreadContext interface would * be confusing when the ThreadContext is exported via a proxy. */ void serialize(ThreadContext &tc, CheckpointOut &cp); void unserialize(ThreadContext &tc, CheckpointIn &cp); /** @} */ /** * Copy state between thread contexts in preparation for CPU handover. * * @note This method modifies the old thread contexts as well as the * new thread context. The old thread context will have its quiesce * event descheduled if it is scheduled and its status set to halted. * * @param new_tc Destination ThreadContext. * @param old_tc Source ThreadContext. */ void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc); #endif