# Copyright (c) 2009-2019 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2006-2007 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Ali Saidi # Gabe Black # William Wang # Glenn Bergmans from m5.defines import buildEnv from m5.params import * from m5.proxy import * from m5.util.fdthelper import * from m5.objects.ClockDomain import ClockDomain from m5.objects.VoltageDomain import VoltageDomain from m5.objects.Device import \ BasicPioDevice, PioDevice, IsaFake, BadAddr, DmaDevice from m5.objects.PciHost import * from m5.objects.Ethernet import NSGigE, IGbE_igb, IGbE_e1000 from m5.objects.Ide import * from m5.objects.Platform import Platform from m5.objects.Terminal import Terminal from m5.objects.Uart import Uart from m5.objects.SimpleMemory import SimpleMemory from m5.objects.Gic import * from m5.objects.EnergyCtrl import EnergyCtrl from m5.objects.ClockedObject import ClockedObject from m5.objects.ClockDomain import SrcClockDomain from m5.objects.SubSystem import SubSystem from m5.objects.Graphics import ImageFormat from m5.objects.ClockedObject import ClockedObject from m5.objects.PS2 import * from m5.objects.VirtIOMMIO import MmioVirtIO from m5.objects.Display import Display, Display1080p from m5.objects.SMMUv3 import SMMUv3 # Platforms with KVM support should generally use in-kernel GIC # emulation. Use a GIC model that automatically switches between # gem5's GIC model and KVM's GIC model if KVM is available. try: from m5.objects.KvmGic import MuxingKvmGic kvm_gicv2_class = MuxingKvmGic except ImportError: # KVM support wasn't compiled into gem5. Fallback to a # software-only GIC. kvm_gicv2_class = Gic400 pass class AmbaPioDevice(BasicPioDevice): type = 'AmbaPioDevice' abstract = True cxx_header = "dev/arm/amba_device.hh" amba_id = Param.UInt32("ID of AMBA device for kernel detection") class AmbaIntDevice(AmbaPioDevice): type = 'AmbaIntDevice' abstract = True cxx_header = "dev/arm/amba_device.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num = Param.UInt32("Interrupt number that connects to GIC") int_delay = Param.Latency("100ns", "Time between action and interrupt generation by device") class AmbaDmaDevice(DmaDevice): type = 'AmbaDmaDevice' abstract = True cxx_header = "dev/arm/amba_device.hh" pio_addr = Param.Addr("Address for AMBA slave interface") pio_latency = Param.Latency("10ns", "Time between action and write/read result by AMBA DMA Device") gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num = Param.UInt32("Interrupt number that connects to GIC") amba_id = Param.UInt32("ID of AMBA device for kernel detection") class A9SCU(BasicPioDevice): type = 'A9SCU' cxx_header = "dev/arm/a9scu.hh" class ArmPciIntRouting(Enum): vals = [ 'ARM_PCI_INT_STATIC', 'ARM_PCI_INT_DEV', 'ARM_PCI_INT_PIN', ] class GenericArmPciHost(GenericPciHost): type = 'GenericArmPciHost' cxx_header = "dev/arm/pci_host.hh" int_policy = Param.ArmPciIntRouting("PCI interrupt routing policy") int_base = Param.Unsigned("PCI interrupt base") int_count = Param.Unsigned("Maximum number of interrupts used by this host") # This python parameter can be used in configuration scripts to turn # on/off the fdt dma-coherent flag when doing dtb autogeneration _dma_coherent = True def generateDeviceTree(self, state): local_state = FdtState( addr_cells=3, size_cells=2, cpu_cells=1, interrupt_cells=1) node = FdtNode("pci") if int(self.conf_device_bits) == 8: node.appendCompatible("pci-host-cam-generic") elif int(self.conf_device_bits) == 12: node.appendCompatible("pci-host-ecam-generic") else: m5.fatal("No compatibility string for the set conf_device_width") node.append(FdtPropertyStrings("device_type", ["pci"])) # Cell sizes of child nodes/peripherals node.append(local_state.addrCellsProperty()) node.append(local_state.sizeCellsProperty()) node.append(local_state.interruptCellsProperty()) # PCI address for CPU node.append(FdtPropertyWords("reg", state.addrCells(self.conf_base) + state.sizeCells(self.conf_size) )) # Ranges mapping # For now some of this is hard coded, because the PCI module does not # have a proper full understanding of the memory map, but adapting the # PCI module is beyond the scope of what I'm trying to do here. # Values are taken from the VExpress_GEM5_V1 platform. ranges = [] # Pio address range ranges += self.pciFdtAddr(space=1, addr=0) ranges += state.addrCells(self.pci_pio_base) ranges += local_state.sizeCells(0x10000) # Fixed size # AXI memory address range ranges += self.pciFdtAddr(space=2, addr=0) ranges += state.addrCells(0x40000000) # Fixed offset ranges += local_state.sizeCells(0x40000000) # Fixed size node.append(FdtPropertyWords("ranges", ranges)) if str(self.int_policy) == 'ARM_PCI_INT_DEV': gic = self._parent.unproxy(self).gic int_phandle = state.phandle(gic) # Interrupt mapping interrupts = [] # child interrupt specifier child_interrupt = local_state.interruptCells(0x0) # parent unit address parent_addr = gic._state.addrCells(0x0) for i in range(int(self.int_count)): parent_interrupt = gic.interruptCells(0, int(self.int_base) - 32 + i, 1) interrupts += self.pciFdtAddr(device=i, addr=0) + \ child_interrupt + [int_phandle] + parent_addr + \ parent_interrupt node.append(FdtPropertyWords("interrupt-map", interrupts)) int_count = int(self.int_count) if int_count & (int_count - 1): fatal("PCI interrupt count should be power of 2") intmask = self.pciFdtAddr(device=int_count - 1, addr=0) + [0x0] node.append(FdtPropertyWords("interrupt-map-mask", intmask)) else: m5.fatal("Unsupported PCI interrupt policy " + "for Device Tree generation") if self._dma_coherent: node.append(FdtProperty("dma-coherent")) yield node class RealViewCtrl(BasicPioDevice): type = 'RealViewCtrl' cxx_header = "dev/arm/rv_ctrl.hh" proc_id0 = Param.UInt32(0x0C000000, "Processor ID, SYS_PROCID") proc_id1 = Param.UInt32(0x0C000222, "Processor ID, SYS_PROCID1") idreg = Param.UInt32(0x00000000, "ID Register, SYS_ID") def generateDeviceTree(self, state): node = FdtNode("sysreg@%x" % long(self.pio_addr)) node.appendCompatible("arm,vexpress-sysreg") node.append(FdtPropertyWords("reg", state.addrCells(self.pio_addr) + state.sizeCells(0x1000) )) node.append(FdtProperty("gpio-controller")) node.append(FdtPropertyWords("#gpio-cells", [2])) node.appendPhandle(self) yield node class RealViewOsc(ClockDomain): type = 'RealViewOsc' cxx_header = "dev/arm/rv_ctrl.hh" parent = Param.RealViewCtrl(Parent.any, "RealView controller") # TODO: We currently don't have the notion of a clock source, # which means we have to associate oscillators with a voltage # source. voltage_domain = Param.VoltageDomain(Parent.voltage_domain, "Voltage domain") # See ARM DUI 0447J (ARM Motherboard Express uATX -- V2M-P1) and # the individual core/logic tile reference manuals for details # about the site/position/dcc/device allocation. site = Param.UInt8("Board Site") position = Param.UInt8("Position in device stack") dcc = Param.UInt8("Daughterboard Configuration Controller") device = Param.UInt8("Device ID") freq = Param.Clock("Default frequency") def generateDeviceTree(self, state): phandle = state.phandle(self) node = FdtNode("osc@" + format(long(phandle), 'x')) node.appendCompatible("arm,vexpress-osc") node.append(FdtPropertyWords("arm,vexpress-sysreg,func", [0x1, int(self.device)])) node.append(FdtPropertyWords("#clock-cells", [0])) freq = int(1.0/self.freq.value) # Values are stored as a clock period node.append(FdtPropertyWords("freq-range", [freq, freq])) node.append(FdtPropertyStrings("clock-output-names", ["oscclk" + str(phandle)])) node.appendPhandle(self) yield node class RealViewTemperatureSensor(SimObject): type = 'RealViewTemperatureSensor' cxx_header = "dev/arm/rv_ctrl.hh" parent = Param.RealViewCtrl(Parent.any, "RealView controller") system = Param.System(Parent.any, "system") # See ARM DUI 0447J (ARM Motherboard Express uATX -- V2M-P1) and # the individual core/logic tile reference manuals for details # about the site/position/dcc/device allocation. site = Param.UInt8("Board Site") position = Param.UInt8("Position in device stack") dcc = Param.UInt8("Daughterboard Configuration Controller") device = Param.UInt8("Device ID") class VExpressMCC(SubSystem): """ARM V2M-P1 Motherboard Configuration Controller This subsystem describes a subset of the devices that sit behind the motherboard configuration controller on the the ARM Motherboard Express (V2M-P1) motherboard. See ARM DUI 0447J for details. """ class Osc(RealViewOsc): site, position, dcc = (0, 0, 0) class Temperature(RealViewTemperatureSensor): site, position, dcc = (0, 0, 0) osc_mcc = Osc(device=0, freq="50MHz") osc_clcd = Osc(device=1, freq="23.75MHz") osc_peripheral = Osc(device=2, freq="24MHz") osc_system_bus = Osc(device=4, freq="24MHz") # See Table 4.19 in ARM DUI 0447J (Motherboard Express uATX TRM). temp_crtl = Temperature(device=0) def generateDeviceTree(self, state): node = FdtNode("mcc") node.appendCompatible("arm,vexpress,config-bus") node.append(FdtPropertyWords("arm,vexpress,site", [0])) for obj in self._children.values(): if issubclass(type(obj), SimObject): node.append(obj.generateDeviceTree(state)) io_phandle = state.phandle(self.osc_mcc.parent.unproxy(self)) node.append(FdtPropertyWords("arm,vexpress,config-bridge", io_phandle)) yield node class CoreTile2A15DCC(SubSystem): """ARM CoreTile Express A15x2 Daughterboard Configuration Controller This subsystem describes a subset of the devices that sit behind the daughterboard configuration controller on a CoreTile Express A15x2. See ARM DUI 0604E for details. """ class Osc(RealViewOsc): site, position, dcc = (1, 0, 0) # See Table 2.8 in ARM DUI 0604E (CoreTile Express A15x2 TRM) osc_cpu = Osc(device=0, freq="60MHz") osc_hsbm = Osc(device=4, freq="40MHz") osc_pxl = Osc(device=5, freq="23.75MHz") osc_smb = Osc(device=6, freq="50MHz") osc_sys = Osc(device=7, freq="60MHz") osc_ddr = Osc(device=8, freq="40MHz") def generateDeviceTree(self, state): node = FdtNode("dcc") node.appendCompatible("arm,vexpress,config-bus") for obj in self._children.values(): if isinstance(obj, SimObject): node.append(obj.generateDeviceTree(state)) io_phandle = state.phandle(self.osc_cpu.parent.unproxy(self)) node.append(FdtPropertyWords("arm,vexpress,config-bridge", io_phandle)) yield node class AmbaFake(AmbaPioDevice): type = 'AmbaFake' cxx_header = "dev/arm/amba_fake.hh" ignore_access = Param.Bool(False, "Ignore reads/writes to this device, (e.g. IsaFake + AMBA)") amba_id = 0; class Pl011(Uart): type = 'Pl011' cxx_header = "dev/arm/pl011.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num = Param.UInt32("Interrupt number that connects to GIC") end_on_eot = Param.Bool(False, "End the simulation when a EOT is received on the UART") int_delay = Param.Latency("100ns", "Time between action and interrupt generation by UART") def generateDeviceTree(self, state): node = self.generateBasicPioDeviceNode(state, 'uart', self.pio_addr, 0x1000, [int(self.int_num)]) node.appendCompatible(["arm,pl011", "arm,primecell"]) # Hardcoded reference to the realview platform clocks, because the # clk_domain can only store one clock (i.e. it is not a VectorParam) realview = self._parent.unproxy(self) node.append(FdtPropertyWords("clocks", [state.phandle(realview.mcc.osc_peripheral), state.phandle(realview.dcc.osc_smb)])) node.append(FdtPropertyStrings("clock-names", ["uartclk", "apb_pclk"])) yield node class Sp804(AmbaPioDevice): type = 'Sp804' cxx_header = "dev/arm/timer_sp804.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num0 = Param.UInt32("Interrupt number that connects to GIC") clock0 = Param.Clock('1MHz', "Clock speed of the input") int_num1 = Param.UInt32("Interrupt number that connects to GIC") clock1 = Param.Clock('1MHz', "Clock speed of the input") amba_id = 0x00141804 class A9GlobalTimer(BasicPioDevice): type = 'A9GlobalTimer' cxx_header = "dev/arm/timer_a9global.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num = Param.UInt32("Interrrupt number that connects to GIC") class CpuLocalTimer(BasicPioDevice): type = 'CpuLocalTimer' cxx_header = "dev/arm/timer_cpulocal.hh" int_timer = Param.ArmPPI("Interrrupt used per-cpu to GIC") int_watchdog = Param.ArmPPI("Interrupt for per-cpu watchdog to GIC") class GenericTimer(ClockedObject): type = 'GenericTimer' cxx_header = "dev/arm/generic_timer.hh" system = Param.ArmSystem(Parent.any, "system") int_phys_s = Param.ArmPPI("Physical (S) timer interrupt") int_phys_ns = Param.ArmPPI("Physical (NS) timer interrupt") int_virt = Param.ArmPPI("Virtual timer interrupt") int_hyp = Param.ArmPPI("Hypervisor timer interrupt") def generateDeviceTree(self, state): node = FdtNode("timer") node.appendCompatible(["arm,cortex-a15-timer", "arm,armv7-timer", "arm,armv8-timer"]) node.append(FdtPropertyWords("interrupts", [ 1, int(self.int_phys_s.num) - 16, 0xf08, 1, int(self.int_phys_ns.num) - 16, 0xf08, 1, int(self.int_virt.num) - 16, 0xf08, 1, int(self.int_hyp.num) - 16, 0xf08, ])) clock = state.phandle(self.clk_domain.unproxy(self)) node.append(FdtPropertyWords("clocks", clock)) yield node class GenericTimerMem(PioDevice): type = 'GenericTimerMem' cxx_header = "dev/arm/generic_timer.hh" base = Param.Addr(0, "Base address") int_phys = Param.ArmSPI("Physical Interrupt") int_virt = Param.ArmSPI("Virtual Interrupt") class PL031(AmbaIntDevice): type = 'PL031' cxx_header = "dev/arm/rtc_pl031.hh" time = Param.Time('01/01/2009', "System time to use ('Now' for actual time)") amba_id = 0x00341031 def generateDeviceTree(self, state): node = self.generateBasicPioDeviceNode(state, 'rtc', self.pio_addr, 0x1000, [int(self.int_num)]) node.appendCompatible(["arm,pl031", "arm,primecell"]) clock = state.phandle(self.clk_domain.unproxy(self)) node.append(FdtPropertyWords("clocks", clock)) yield node class Pl050(AmbaIntDevice): type = 'Pl050' cxx_header = "dev/arm/kmi.hh" amba_id = 0x00141050 ps2 = Param.PS2Device("PS/2 device") def generateDeviceTree(self, state): node = self.generateBasicPioDeviceNode(state, 'kmi', self.pio_addr, 0x1000, [int(self.int_num)]) node.appendCompatible(["arm,pl050", "arm,primecell"]) clock = state.phandle(self.clk_domain.unproxy(self)) node.append(FdtPropertyWords("clocks", clock)) yield node class Pl111(AmbaDmaDevice): type = 'Pl111' cxx_header = "dev/arm/pl111.hh" pixel_clock = Param.Clock('24MHz', "Pixel clock") vnc = Param.VncInput(Parent.any, "Vnc server for remote frame buffer display") amba_id = 0x00141111 enable_capture = Param.Bool(True, "capture frame to system.framebuffer.bmp") class HDLcd(AmbaDmaDevice): type = 'HDLcd' cxx_header = "dev/arm/hdlcd.hh" vnc = Param.VncInput(Parent.any, "Vnc server for remote frame buffer " "display") amba_id = 0x00141000 workaround_swap_rb = Param.Bool(False, "Workaround incorrect color " "selector order in some kernels") workaround_dma_line_count = Param.Bool(True, "Workaround incorrect " "DMA line count (off by 1)") enable_capture = Param.Bool(True, "capture frame to " "system.framebuffer.{extension}") frame_format = Param.ImageFormat("Auto", "image format of the captured frame") pixel_buffer_size = Param.MemorySize32("2kB", "Size of address range") pxl_clk = Param.ClockDomain("Pixel clock source") pixel_chunk = Param.Unsigned(32, "Number of pixels to handle in one batch") virt_refresh_rate = Param.Frequency("20Hz", "Frame refresh rate " "in KVM mode") _status = "disabled" encoder = Param.Display(Display1080p(), "Display encoder") def endpointPhandle(self): return "hdlcd_endpoint" def generateDeviceTree(self, state): endpoint_node = FdtNode("endpoint") endpoint_node.appendPhandle(self.endpointPhandle()) for encoder_node in self.encoder.generateDeviceTree(state): encoder_endpoint = self.encoder.endpointNode() # Endpoint subnode endpoint_node.append(FdtPropertyWords("remote-endpoint", [ state.phandle(self.encoder.endpointPhandle()) ])) encoder_endpoint.append(FdtPropertyWords("remote-endpoint", [ state.phandle(self.endpointPhandle()) ])) yield encoder_node port_node = FdtNode("port") port_node.append(endpoint_node) # Interrupt number is hardcoded; it is not a property of this class node = self.generateBasicPioDeviceNode(state, 'hdlcd', self.pio_addr, 0x1000, [63]) node.appendCompatible(["arm,hdlcd"]) node.append(FdtPropertyWords("clocks", state.phandle(self.pxl_clk))) node.append(FdtPropertyStrings("clock-names", ["pxlclk"])) # This driver is disabled by default since the required DT nodes # haven't been standardized yet. To use it, override this status to # "ok" and add the display configuration nodes required by the driver. # See the driver for more information. node.append(FdtPropertyStrings("status", [ self._status ])) self.addIommuProperty(state, node) node.append(port_node) yield node class RealView(Platform): type = 'RealView' cxx_header = "dev/arm/realview.hh" system = Param.System(Parent.any, "system") _mem_regions = [ AddrRange(0, size='256MB') ] def _on_chip_devices(self): return [] def _off_chip_devices(self): return [] _off_chip_ranges = [] def _attach_memory(self, mem, bus, mem_ports=None): if hasattr(mem, "port"): if mem_ports is None: mem.port = bus.master else: mem_ports.append(mem.port) def _attach_device(self, device, bus, dma_ports=None): if hasattr(device, "pio"): device.pio = bus.master if hasattr(device, "dma"): if dma_ports is None: device.dma = bus.slave else: dma_ports.append(device.dma) def _attach_io(self, devices, *args, **kwargs): for d in devices: self._attach_device(d, *args, **kwargs) def _attach_mem(self, memories, *args, **kwargs): for mem in memories: self._attach_memory(mem, *args, **kwargs) def _attach_clk(self, devices, clkdomain): for d in devices: if hasattr(d, "clk_domain"): d.clk_domain = clkdomain def attachPciDevices(self): pass def enableMSIX(self): pass def onChipIOClkDomain(self, clkdomain): self._attach_clk(self._on_chip_devices(), clkdomain) def offChipIOClkDomain(self, clkdomain): self._attach_clk(self._off_chip_devices(), clkdomain) def attachOnChipIO(self, bus, bridge=None, dma_ports=None, mem_ports=None): self._attach_mem(self._on_chip_memory(), bus, mem_ports) self._attach_io(self._on_chip_devices(), bus, dma_ports) if bridge: bridge.ranges = self._off_chip_ranges def attachIO(self, *args, **kwargs): self._attach_io(self._off_chip_devices(), *args, **kwargs) def setupBootLoader(self, cur_sys, loc): cur_sys.boot_loader = loc('boot.arm') cur_sys.atags_addr = 0x100 cur_sys.load_offset = 0 def generateDeviceTree(self, state): node = FdtNode("/") # Things in this module need to end up in the root node.append(FdtPropertyWords("interrupt-parent", state.phandle(self.gic))) for subnode in self.recurseDeviceTree(state): node.append(subnode) yield node def annotateCpuDeviceNode(self, cpu, state): cpu.append(FdtPropertyStrings("enable-method", "spin-table")) cpu.append(FdtPropertyWords("cpu-release-addr", \ state.addrCells(0x8000fff8))) class VExpress_EMM(RealView): _mem_regions = [ AddrRange('2GB', size='2GB') ] # Ranges based on excluding what is part of on-chip I/O (gic, # a9scu) _off_chip_ranges = [AddrRange(0x2F000000, size='16MB'), AddrRange(0x30000000, size='256MB'), AddrRange(0x40000000, size='512MB'), AddrRange(0x18000000, size='64MB'), AddrRange(0x1C000000, size='64MB')] # Platform control device (off-chip) realview_io = RealViewCtrl(proc_id0=0x14000000, proc_id1=0x14000000, idreg=0x02250000, pio_addr=0x1C010000) mcc = VExpressMCC() dcc = CoreTile2A15DCC() ### On-chip devices ### gic = Gic400(dist_addr=0x2C001000, cpu_addr=0x2C002000) vgic = VGic(vcpu_addr=0x2c006000, hv_addr=0x2c004000, maint_int=25) local_cpu_timer = CpuLocalTimer(int_timer=ArmPPI(num=29), int_watchdog=ArmPPI(num=30), pio_addr=0x2C080000) hdlcd = HDLcd(pxl_clk=dcc.osc_pxl, pio_addr=0x2b000000, int_num=117, workaround_swap_rb=True) def _on_chip_devices(self): devices = [ self.gic, self.vgic, self.local_cpu_timer ] if hasattr(self, "gicv2m"): devices.append(self.gicv2m) devices.append(self.hdlcd) return devices def _on_chip_memory(self): memories = [ self.bootmem, ] return memories ### Off-chip devices ### uart = Pl011(pio_addr=0x1c090000, int_num=37) pci_host = GenericPciHost( conf_base=0x30000000, conf_size='256MB', conf_device_bits=16, pci_pio_base=0) generic_timer = GenericTimer(int_phys_s=ArmPPI(num=29), int_phys_ns=ArmPPI(num=30), int_virt=ArmPPI(num=27), int_hyp=ArmPPI(num=26)) timer0 = Sp804(int_num0=34, int_num1=34, pio_addr=0x1C110000, clock0='1MHz', clock1='1MHz') timer1 = Sp804(int_num0=35, int_num1=35, pio_addr=0x1C120000, clock0='1MHz', clock1='1MHz') clcd = Pl111(pio_addr=0x1c1f0000, int_num=46) kmi0 = Pl050(pio_addr=0x1c060000, int_num=44, ps2=PS2Keyboard()) kmi1 = Pl050(pio_addr=0x1c070000, int_num=45, ps2=PS2TouchKit()) cf_ctrl = IdeController(disks=[], pci_func=0, pci_dev=0, pci_bus=2, io_shift = 2, ctrl_offset = 2, Command = 0x1, BAR0 = 0x1C1A0000, BAR0Size = '256B', BAR1 = 0x1C1A0100, BAR1Size = '4096B', BAR0LegacyIO = True, BAR1LegacyIO = True) bootmem = SimpleMemory(range = AddrRange('64MB'), conf_table_reported = False) vram = SimpleMemory(range = AddrRange(0x18000000, size='32MB'), conf_table_reported = False) rtc = PL031(pio_addr=0x1C170000, int_num=36) l2x0_fake = IsaFake(pio_addr=0x2C100000, pio_size=0xfff) uart1_fake = AmbaFake(pio_addr=0x1C0A0000) uart2_fake = AmbaFake(pio_addr=0x1C0B0000) uart3_fake = AmbaFake(pio_addr=0x1C0C0000) sp810_fake = AmbaFake(pio_addr=0x1C020000, ignore_access=True) watchdog_fake = AmbaFake(pio_addr=0x1C0F0000) aaci_fake = AmbaFake(pio_addr=0x1C040000) lan_fake = IsaFake(pio_addr=0x1A000000, pio_size=0xffff) usb_fake = IsaFake(pio_addr=0x1B000000, pio_size=0x1ffff) mmc_fake = AmbaFake(pio_addr=0x1c050000) energy_ctrl = EnergyCtrl(pio_addr=0x1c080000) def _off_chip_devices(self): devices = [ self.uart, self.realview_io, self.pci_host, self.timer0, self.timer1, self.clcd, self.kmi0, self.kmi1, self.cf_ctrl, self.rtc, self.vram, self.l2x0_fake, self.uart1_fake, self.uart2_fake, self.uart3_fake, self.sp810_fake, self.watchdog_fake, self.aaci_fake, self.lan_fake, self.usb_fake, self.mmc_fake, self.energy_ctrl, ] # Try to attach the I/O if it exists if hasattr(self, "ide"): devices.append(self.ide) if hasattr(self, "ethernet"): devices.append(self.ethernet) return devices # Attach any PCI devices that are supported def attachPciDevices(self): self.ethernet = IGbE_e1000(pci_bus=0, pci_dev=0, pci_func=0, InterruptLine=1, InterruptPin=1) self.ide = IdeController(disks = [], pci_bus=0, pci_dev=1, pci_func=0, InterruptLine=2, InterruptPin=2) def enableMSIX(self): self.gic = Gic400(dist_addr=0x2C001000, cpu_addr=0x2C002000, it_lines=512) self.gicv2m = Gicv2m() self.gicv2m.frames = [Gicv2mFrame(spi_base=256, spi_len=64, addr=0x2C1C0000)] def setupBootLoader(self, cur_sys, loc): if not cur_sys.boot_loader: cur_sys.boot_loader = loc('boot_emm.arm') cur_sys.atags_addr = 0x8000000 cur_sys.load_offset = 0x80000000 class VExpress_EMM64(VExpress_EMM): # Three memory regions are specified totalling 512GB _mem_regions = [ AddrRange('2GB', size='2GB'), AddrRange('34GB', size='30GB'), AddrRange('512GB', size='480GB') ] pci_host = GenericPciHost( conf_base=0x30000000, conf_size='256MB', conf_device_bits=12, pci_pio_base=0x2f000000) def setupBootLoader(self, cur_sys, loc): if not cur_sys.boot_loader: cur_sys.boot_loader = loc('boot_emm.arm64') cur_sys.atags_addr = 0x8000000 cur_sys.load_offset = 0x80000000 class VExpress_GEM5_Base(RealView): """ The VExpress gem5 memory map is loosely based on a modified Versatile Express RS1 memory map. The gem5 platform has been designed to implement a subset of the original Versatile Express RS1 memory map. Off-chip peripherals should, when possible, adhere to the Versatile Express memory map. Non-PCI off-chip devices that are gem5-specific should live in the CS5 memory space to avoid conflicts with existing devices that we might want to model in the future. Such devices should normally have interrupts in the gem5-specific SPI range. On-chip peripherals are loosely modeled after the ARM CoreTile Express A15x2 A7x3 memory and interrupt map. In particular, the GIC and Generic Timer have the same interrupt lines and base addresses. Other on-chip devices are gem5 specific. Unlike the original Versatile Express RS2 extended platform, gem5 implements a large contigious DRAM space, without aliases or holes, starting at the 2GiB boundary. This means that PCI memory is limited to 1GiB. Memory map: 0x00000000-0x03ffffff: Boot memory (CS0) 0x04000000-0x07ffffff: Reserved 0x08000000-0x0bffffff: Reserved (CS0 alias) 0x0c000000-0x0fffffff: Reserved (Off-chip, CS4) 0x10000000-0x13ffffff: gem5-specific peripherals (Off-chip, CS5) 0x10000000-0x1000ffff: gem5 energy controller 0x10010000-0x1001ffff: gem5 pseudo-ops 0x14000000-0x17ffffff: Reserved (Off-chip, PSRAM, CS1) 0x18000000-0x1bffffff: Reserved (Off-chip, Peripherals, CS2) 0x1c000000-0x1fffffff: Peripheral block 1 (Off-chip, CS3): 0x1c010000-0x1c01ffff: realview_io (VE system control regs.) 0x1c060000-0x1c06ffff: KMI0 (keyboard) 0x1c070000-0x1c07ffff: KMI1 (mouse) 0x1c090000-0x1c09ffff: UART0 0x1c0a0000-0x1c0affff: UART1 (reserved) 0x1c0b0000-0x1c0bffff: UART2 (reserved) 0x1c0c0000-0x1c0cffff: UART3 (reserved) 0x1c130000-0x1c13ffff: VirtIO (gem5/FM extension) 0x1c140000-0x1c14ffff: VirtIO (gem5/FM extension) 0x1c170000-0x1c17ffff: RTC 0x20000000-0x3fffffff: On-chip peripherals: 0x2b000000-0x2b00ffff: HDLCD 0x2b400000-0x2b41ffff: SMMUv3 0x2c001000-0x2c001fff: GIC (distributor) 0x2c002000-0x2c003fff: GIC (CPU interface) 0x2c004000-0x2c005fff: vGIC (HV) 0x2c006000-0x2c007fff: vGIC (VCPU) 0x2c1c0000-0x2c1cffff: GICv2m MSI frame 0 0x2d000000-0x2d00ffff: GPU (reserved) 0x2f000000-0x2fffffff: PCI IO space 0x30000000-0x3fffffff: PCI config space 0x40000000-0x7fffffff: Ext. AXI: Used as PCI memory 0x80000000-X: DRAM Interrupts: 0- 15: Software generated interrupts (SGIs) 16- 31: On-chip private peripherals (PPIs) 25 : vgic 26 : generic_timer (hyp) 27 : generic_timer (virt) 28 : Reserved (Legacy FIQ) 29 : generic_timer (phys, sec) 30 : generic_timer (phys, non-sec) 31 : Reserved (Legacy IRQ) 32- 95: Mother board peripherals (SPIs) 32 : Reserved (SP805) 33 : Reserved (IOFPGA SW int) 34-35: Reserved (SP804) 36 : RTC 37-40: uart0-uart3 41-42: Reserved (PL180) 43 : Reserved (AACI) 44-45: kmi0-kmi1 46 : Reserved (CLCD) 47 : Reserved (Ethernet) 48 : Reserved (USB) 95-255: On-chip interrupt sources (we use these for gem5-specific devices, SPIs) 74 : VirtIO (gem5/FM extension) 75 : VirtIO (gem5/FM extension) 95 : HDLCD 96- 98: GPU (reserved) 100-103: PCI 256-319: MSI frame 0 (gem5-specific, SPIs) 320-511: Unused """ # Everything above 2GiB is memory _mem_regions = [ AddrRange('2GB', size='510GB') ] _off_chip_ranges = [ # CS1-CS5 AddrRange(0x0c000000, 0x1fffffff), # External AXI interface (PCI) AddrRange(0x2f000000, 0x7fffffff), ] bootmem = SimpleMemory(range=AddrRange(0, size='64MB'), conf_table_reported=False) # Platform control device (off-chip) realview_io = RealViewCtrl(proc_id0=0x14000000, proc_id1=0x14000000, idreg=0x02250000, pio_addr=0x1c010000) mcc = VExpressMCC() dcc = CoreTile2A15DCC() ### On-chip devices ### generic_timer = GenericTimer(int_phys_s=ArmPPI(num=29), int_phys_ns=ArmPPI(num=30), int_virt=ArmPPI(num=27), int_hyp=ArmPPI(num=26)) def _on_chip_devices(self): return [ self.generic_timer, ] def _on_chip_memory(self): memories = [ self.bootmem, ] return memories ### Off-chip devices ### clock24MHz = SrcClockDomain(clock="24MHz", voltage_domain=VoltageDomain(voltage="3.3V")) uart = [ Pl011(pio_addr=0x1c090000, int_num=37), ] kmi0 = Pl050(pio_addr=0x1c060000, int_num=44, ps2=PS2Keyboard()) kmi1 = Pl050(pio_addr=0x1c070000, int_num=45, ps2=PS2TouchKit()) rtc = PL031(pio_addr=0x1c170000, int_num=36) ### gem5-specific off-chip devices ### pci_host = GenericArmPciHost( conf_base=0x30000000, conf_size='256MB', conf_device_bits=12, pci_pio_base=0x2f000000, int_policy="ARM_PCI_INT_DEV", int_base=100, int_count=4) energy_ctrl = EnergyCtrl(pio_addr=0x10000000) vio = [ MmioVirtIO(pio_addr=0x1c130000, pio_size=0x1000, interrupt=ArmSPI(num=74)), MmioVirtIO(pio_addr=0x1c140000, pio_size=0x1000, interrupt=ArmSPI(num=75)), ] def _off_chip_devices(self): return [ self.realview_io, self.uart[0], self.kmi0, self.kmi1, self.rtc, self.pci_host, self.energy_ctrl, self.clock24MHz, self.vio[0], self.vio[1], ] def attachPciDevice(self, device, *args, **kwargs): device.host = self.pci_host self._attach_device(device, *args, **kwargs) def attachSmmu(self, devices, bus): """ Instantiate a single SMMU and attach a group of client devices to it. The devices' dma port is wired to the SMMU and the SMMU's dma port (master) is attached to the bus. In order to make it work, the list of clients shouldn't contain any device part of the _off_chip_devices or _on_chip_devices. This method should be called only once. Parameters: devices (list): List of devices which will be using the SMMU bus (Bus): The bus downstream of the SMMU. Its slave port will receive memory requests from the SMMU, and its master port will forward accesses to the memory mapped devices """ if hasattr(self, 'smmu'): m5.fatal("A SMMU has already been instantiated\n") self.smmu = SMMUv3(reg_map=AddrRange(0x2b400000, size=0x00020000)) dma_ports = [] for dev in devices: self._attach_device(dev, bus, dma_ports) self.smmu.connect(dev, bus) def setupBootLoader(self, cur_sys, loc): if not cur_sys.boot_loader: cur_sys.boot_loader = [ loc('boot_emm.arm64'), loc('boot_emm.arm') ] cur_sys.atags_addr = 0x8000000 cur_sys.load_offset = 0x80000000 # Setup m5ops. It's technically not a part of the boot # loader, but this is the only place we can configure the # system. cur_sys.m5ops_base = 0x10010000 def generateDeviceTree(self, state): # Generate using standard RealView function dt = list(super(VExpress_GEM5_Base, self).generateDeviceTree(state)) if len(dt) > 1: raise Exception("System returned too many DT nodes") node = dt[0] node.appendCompatible(["arm,vexpress"]) node.append(FdtPropertyStrings("model", ["V2P-CA15"])) node.append(FdtPropertyWords("arm,hbi", [0x0])) node.append(FdtPropertyWords("arm,vexpress,site", [0xf])) yield node class VExpress_GEM5_V1_Base(VExpress_GEM5_Base): gic = kvm_gicv2_class(dist_addr=0x2c001000, cpu_addr=0x2c002000, it_lines=512) vgic = VGic(vcpu_addr=0x2c006000, hv_addr=0x2c004000, maint_int=25) gicv2m = Gicv2m() gicv2m.frames = [ Gicv2mFrame(spi_base=256, spi_len=64, addr=0x2c1c0000), ] def _on_chip_devices(self): return super(VExpress_GEM5_V1_Base,self)._on_chip_devices() + [ self.gic, self.vgic, self.gicv2m, ] class VExpress_GEM5_V1(VExpress_GEM5_V1_Base): hdlcd = HDLcd(pxl_clk=VExpress_GEM5_V1_Base.dcc.osc_pxl, pio_addr=0x2b000000, int_num=95) def _on_chip_devices(self): return super(VExpress_GEM5_V1,self)._on_chip_devices() + [ self.hdlcd, ] class VExpress_GEM5_V2_Base(VExpress_GEM5_Base): gic = Gicv3(dist_addr=0x2c000000, redist_addr=0x2c010000, maint_int=ArmPPI(num=25), its=Gicv3Its(pio_addr=0x2e010000)) # Limiting to 128 since it will otherwise overlap with PCI space gic.cpu_max = 128 def _on_chip_devices(self): return super(VExpress_GEM5_V2_Base,self)._on_chip_devices() + [ self.gic, self.gic.its ] def setupBootLoader(self, cur_sys, loc): cur_sys.boot_loader = [ loc('boot_emm_v2.arm64') ] super(VExpress_GEM5_V2_Base,self).setupBootLoader( cur_sys, loc) class VExpress_GEM5_V2(VExpress_GEM5_V2_Base): hdlcd = HDLcd(pxl_clk=VExpress_GEM5_V2_Base.dcc.osc_pxl, pio_addr=0x2b000000, int_num=95) def _on_chip_devices(self): return super(VExpress_GEM5_V2,self)._on_chip_devices() + [ self.hdlcd, ]