/* * Copyright (c) 2010, 2013, 2015-2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi */ /** @file * Implementation of a GICv2 */ #ifndef __DEV_ARM_GICV2_H__ #define __DEV_ARM_GICV2_H__ #include #include "base/addr_range.hh" #include "base/bitunion.hh" #include "cpu/intr_control.hh" #include "dev/arm/base_gic.hh" #include "dev/io_device.hh" #include "dev/platform.hh" #include "params/GicV2.hh" class GicV2 : public BaseGic, public BaseGicRegisters { protected: // distributor memory addresses enum { GICD_CTLR = 0x000, // control register GICD_TYPER = 0x004, // controller type GICD_IIDR = 0x008, // implementer id GICD_SGIR = 0xf00, // software generated interrupt GICD_PIDR0 = 0xfe0, // distributor peripheral ID0 GICD_PIDR1 = 0xfe4, // distributor peripheral ID1 GICD_PIDR2 = 0xfe8, // distributor peripheral ID2 GICD_PIDR3 = 0xfec, // distributor peripheral ID3 DIST_SIZE = 0x1000, }; /** * As defined in: * "ARM Generic Interrupt Controller Architecture" version 2.0 * "CoreLink GIC-400 Generic Interrupt Controller" revision r0p1 */ static constexpr uint32_t GICD_400_PIDR_VALUE = 0x002bb490; static constexpr uint32_t GICD_400_IIDR_VALUE = 0x200143B; static constexpr uint32_t GICC_400_IIDR_VALUE = 0x202143B; static const AddrRange GICD_IGROUPR; // interrupt group (unimplemented) static const AddrRange GICD_ISENABLER; // interrupt set enable static const AddrRange GICD_ICENABLER; // interrupt clear enable static const AddrRange GICD_ISPENDR; // set pending interrupt static const AddrRange GICD_ICPENDR; // clear pending interrupt static const AddrRange GICD_ISACTIVER; // active bit registers static const AddrRange GICD_ICACTIVER; // clear bit registers static const AddrRange GICD_IPRIORITYR; // interrupt priority registers static const AddrRange GICD_ITARGETSR; // processor target registers static const AddrRange GICD_ICFGR; // interrupt config registers // cpu memory addresses enum { GICC_CTLR = 0x00, // CPU control register GICC_PMR = 0x04, // Interrupt priority mask GICC_BPR = 0x08, // binary point register GICC_IAR = 0x0C, // interrupt ack register GICC_EOIR = 0x10, // end of interrupt GICC_RPR = 0x14, // running priority GICC_HPPIR = 0x18, // highest pending interrupt GICC_ABPR = 0x1c, // aliased binary point GICC_APR0 = 0xd0, // active priority register 0 GICC_APR1 = 0xd4, // active priority register 1 GICC_APR2 = 0xd8, // active priority register 2 GICC_APR3 = 0xdc, // active priority register 3 GICC_IIDR = 0xfc, // cpu interface id register GICC_DIR = 0x1000, // deactive interrupt register }; static const int SGI_MAX = 16; // Number of Software Gen Interrupts static const int PPI_MAX = 16; // Number of Private Peripheral Interrupts /** Mask off SGI's when setting/clearing pending bits */ static const int SGI_MASK = 0xFFFF0000; /** Mask for bits that config N:N mode in GICD_ICFGR's */ static const int NN_CONFIG_MASK = 0x55555555; static const int CPU_MAX = 256; // Max number of supported CPU interfaces static const int SPURIOUS_INT = 1023; static const int INT_BITS_MAX = 32; static const int INT_LINES_MAX = 1020; static const int GLOBAL_INT_LINES = INT_LINES_MAX - SGI_MAX - PPI_MAX; /** minimum value for Binary Point Register ("IMPLEMENTATION DEFINED"); chosen for consistency with Linux's in-kernel KVM GIC model */ static const int GICC_BPR_MINIMUM = 2; BitUnion32(SWI) Bitfield<3,0> sgi_id; Bitfield<23,16> cpu_list; Bitfield<25,24> list_type; EndBitUnion(SWI) BitUnion32(IAR) Bitfield<9,0> ack_id; Bitfield<12,10> cpu_id; EndBitUnion(IAR) BitUnion32(CTLR) Bitfield<3> fiqEn; Bitfield<1> enableGrp1; Bitfield<0> enableGrp0; EndBitUnion(CTLR) protected: /* Params */ /** Address range for the distributor interface */ const AddrRange distRange; /** Address range for the CPU interfaces */ const AddrRange cpuRange; /** All address ranges used by this GIC */ const AddrRangeList addrRanges; /** Latency for a distributor operation */ const Tick distPioDelay; /** Latency for a cpu operation */ const Tick cpuPioDelay; /** Latency for a interrupt to get to CPU */ const Tick intLatency; protected: /** Gic enabled */ bool enabled; /** Are gem5 extensions available? */ const bool haveGem5Extensions; /** gem5 many-core extension enabled by driver */ bool gem5ExtensionsEnabled; /** Number of itLines enabled */ uint32_t itLines; /** Registers "banked for each connected processor" per ARM IHI0048B */ struct BankedRegs : public Serializable { /** GICD_I{S,C}ENABLER0 * interrupt enable bits for first 32 interrupts, 1b per interrupt */ uint32_t intEnabled; /** GICD_I{S,C}PENDR0 * interrupt pending bits for first 32 interrupts, 1b per interrupt */ uint32_t pendingInt; /** GICD_I{S,C}ACTIVER0 * interrupt active bits for first 32 interrupts, 1b per interrupt */ uint32_t activeInt; /** GICD_IGROUPR0 * interrupt group bits for first 32 interrupts, 1b per interrupt */ uint32_t intGroup; /** GICD_IPRIORITYR{0..7} * interrupt priority for SGIs and PPIs */ uint8_t intPriority[SGI_MAX + PPI_MAX]; void serialize(CheckpointOut &cp) const override; void unserialize(CheckpointIn &cp) override; BankedRegs() : intEnabled(0), pendingInt(0), activeInt(0), intGroup(0), intPriority {0} {} }; std::vector bankedRegs; BankedRegs& getBankedRegs(ContextID); /** GICD_I{S,C}ENABLER{1..31} * interrupt enable bits for global interrupts * 1b per interrupt, 32 bits per word, 31 words */ uint32_t intEnabled[INT_BITS_MAX-1]; uint32_t& getIntEnabled(ContextID ctx, uint32_t ix) { if (ix == 0) { return getBankedRegs(ctx).intEnabled; } else { return intEnabled[ix - 1]; } } /** GICD_I{S,C}PENDR{1..31} * interrupt pending bits for global interrupts * 1b per interrupt, 32 bits per word, 31 words */ uint32_t pendingInt[INT_BITS_MAX-1]; uint32_t& getPendingInt(ContextID ctx, uint32_t ix) { assert(ix < INT_BITS_MAX); if (ix == 0) { return getBankedRegs(ctx).pendingInt; } else { return pendingInt[ix - 1]; } } /** GICD_I{S,C}ACTIVER{1..31} * interrupt active bits for global interrupts * 1b per interrupt, 32 bits per word, 31 words */ uint32_t activeInt[INT_BITS_MAX-1]; uint32_t& getActiveInt(ContextID ctx, uint32_t ix) { assert(ix < INT_BITS_MAX); if (ix == 0) { return getBankedRegs(ctx).activeInt; } else { return activeInt[ix - 1]; } } /** GICD_IGROUPR{1..31} * interrupt group bits for global interrupts * 1b per interrupt, 32 bits per word, 31 words */ uint32_t intGroup[INT_BITS_MAX-1]; uint32_t& getIntGroup(ContextID ctx, uint32_t ix) { assert(ix < INT_BITS_MAX); if (ix == 0) { return getBankedRegs(ctx).intGroup; } else { return intGroup[ix - 1]; } } /** read only running priority register, 1 per cpu*/ uint32_t iccrpr[CPU_MAX]; /** GICD_IPRIORITYR{8..255} * an 8 bit priority (lower is higher priority) for each * of the global (not replicated per CPU) interrupts. */ uint8_t intPriority[GLOBAL_INT_LINES]; uint8_t& getIntPriority(ContextID ctx, uint32_t ix) { assert(ix < INT_LINES_MAX); if (ix < SGI_MAX + PPI_MAX) { return getBankedRegs(ctx).intPriority[ix]; } else { return intPriority[ix - (SGI_MAX + PPI_MAX)]; } } /** GICD_ICFGRn * get 2 bit config associated to an interrupt. */ uint8_t getIntConfig(ContextID ctx, uint32_t ix) { assert(ix < INT_LINES_MAX); const uint8_t cfg_low = intNumToBit(ix * 2); const uint8_t cfg_hi = cfg_low + 1; return bits(intConfig[intNumToWord(ix * 2)], cfg_hi, cfg_low); } /** GICD_ITARGETSR{8..255} * an 8 bit cpu target id for each global interrupt. */ uint8_t cpuTarget[GLOBAL_INT_LINES]; uint8_t getCpuTarget(ContextID ctx, uint32_t ix) { assert(ctx < sys->numRunningContexts()); assert(ix < INT_LINES_MAX); if (ix < SGI_MAX + PPI_MAX) { // "GICD_ITARGETSR0 to GICD_ITARGETSR7 are read-only, and each // field returns a value that corresponds only to the processor // reading the register." uint32_t ctx_mask; if (gem5ExtensionsEnabled) { ctx_mask = ctx; } else { // convert the CPU id number into a bit mask ctx_mask = power(2, ctx); } return ctx_mask; } else { return cpuTarget[ix - 32]; } } /** 2 bit per interrupt signaling if it's level or edge sensitive * and if it is 1:N or N:N */ uint32_t intConfig[INT_BITS_MAX*2]; bool isLevelSensitive(ContextID ctx, uint32_t ix) { if (ix == SPURIOUS_INT) { return false; } else { return bits(getIntConfig(ctx, ix), 1) == 0; } } bool isGroup0(ContextID ctx, uint32_t int_num) { const uint32_t group_reg = getIntGroup(ctx, intNumToWord(int_num)); return !bits(group_reg, intNumToBit(int_num)); } /** * This method checks if an interrupt ID must be signaled or has been * signaled as a FIQ to the cpu. It does that by reading: * * 1) GICD_IGROUPR: controls if the interrupt is part of group0 or * group1. Only group0 interrupts can be signaled as FIQs. * * 2) GICC_CTLR.FIQEn: controls whether the CPU interface signals Group 0 * interrupts to a target processor using the FIQ or the IRQ signal */ bool isFiq(ContextID ctx, uint32_t int_num) { const bool is_group0 = isGroup0(ctx, int_num); const bool use_fiq = cpuControl[ctx].fiqEn; if (is_group0 && use_fiq) { return true; } else { return false; } } /** CPU enabled: * Checks if GICC_CTLR.EnableGrp0 or EnableGrp1 are set */ bool cpuEnabled(ContextID ctx) const { return cpuControl[ctx].enableGrp0 || cpuControl[ctx].enableGrp1; } /** GICC_CTLR: * CPU interface control register */ CTLR cpuControl[CPU_MAX]; /** CPU priority */ uint8_t cpuPriority[CPU_MAX]; uint8_t getCpuPriority(unsigned cpu); // BPR-adjusted priority value /** Binary point registers */ uint8_t cpuBpr[CPU_MAX]; /** highest interrupt that is interrupting CPU */ uint32_t cpuHighestInt[CPU_MAX]; /** One bit per cpu per software interrupt that is pending for each * possible sgi source. Indexed by SGI number. Each byte in generating cpu * id and bits in position is destination id. e.g. 0x4 = CPU 0 generated * interrupt for CPU 2. */ uint64_t cpuSgiPending[SGI_MAX]; uint64_t cpuSgiActive[SGI_MAX]; /** SGI pending arrays for gem5 GIC extension mode, which instead keeps * 16 SGI pending bits for each of the (large number of) CPUs. */ uint32_t cpuSgiPendingExt[CPU_MAX]; uint32_t cpuSgiActiveExt[CPU_MAX]; /** One bit per private peripheral interrupt. Only upper 16 bits * will be used since PPI interrupts are numberred from 16 to 32 */ uint32_t cpuPpiPending[CPU_MAX]; uint32_t cpuPpiActive[CPU_MAX]; /** software generated interrupt * @param data data to decode that indicates which cpus to interrupt */ void softInt(ContextID ctx, SWI swi); /** See if some processor interrupt flags need to be enabled/disabled * @param hint which set of interrupts needs to be checked */ virtual void updateIntState(int hint); /** Update the register that records priority of the highest priority * active interrupt*/ void updateRunPri(); /** generate a bit mask to check cpuSgi for an interrupt. */ uint64_t genSwiMask(int cpu); int intNumToWord(int num) const { return num >> 5; } int intNumToBit(int num) const { return num % 32; } /** Clears a cpu IRQ or FIQ signal */ void clearInt(ContextID ctx, uint32_t int_num); /** * Post an interrupt to a CPU with a delay */ void postInt(uint32_t cpu, Tick when); void postFiq(uint32_t cpu, Tick when); /** * Deliver a delayed interrupt to the target CPU */ void postDelayedInt(uint32_t cpu); void postDelayedFiq(uint32_t cpu); EventFunctionWrapper *postIntEvent[CPU_MAX]; EventFunctionWrapper *postFiqEvent[CPU_MAX]; int pendingDelayedInterrupts; public: typedef GicV2Params Params; const Params * params() const { return dynamic_cast(_params); } GicV2(const Params *p); ~GicV2(); DrainState drain() override; void drainResume() override; void serialize(CheckpointOut &cp) const override; void unserialize(CheckpointIn &cp) override; public: /* PioDevice */ AddrRangeList getAddrRanges() const override { return addrRanges; } /** A PIO read to the device, immediately split up into * readDistributor() or readCpu() */ Tick read(PacketPtr pkt) override; /** A PIO read to the device, immediately split up into * writeDistributor() or writeCpu() */ Tick write(PacketPtr pkt) override; public: /* BaseGic */ void sendInt(uint32_t number) override; void clearInt(uint32_t number) override; void sendPPInt(uint32_t num, uint32_t cpu) override; void clearPPInt(uint32_t num, uint32_t cpu) override; protected: /** Handle a read to the distributor portion of the GIC * @param pkt packet to respond to */ Tick readDistributor(PacketPtr pkt); uint32_t readDistributor(ContextID ctx, Addr daddr, size_t resp_sz); uint32_t readDistributor(ContextID ctx, Addr daddr) override { return readDistributor(ctx, daddr, 4); } /** Handle a read to the cpu portion of the GIC * @param pkt packet to respond to */ Tick readCpu(PacketPtr pkt); uint32_t readCpu(ContextID ctx, Addr daddr) override; /** Handle a write to the distributor portion of the GIC * @param pkt packet to respond to */ Tick writeDistributor(PacketPtr pkt); void writeDistributor(ContextID ctx, Addr daddr, uint32_t data, size_t data_sz); void writeDistributor(ContextID ctx, Addr daddr, uint32_t data) override { return writeDistributor(ctx, daddr, data, 4); } /** Handle a write to the cpu portion of the GIC * @param pkt packet to respond to */ Tick writeCpu(PacketPtr pkt); void writeCpu(ContextID ctx, Addr daddr, uint32_t data) override; }; #endif //__DEV_ARM_GIC_H__