/*
 * Copyright (c) 2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Ali Saidi
 */

/* @file
 * Register and structure descriptions for Intel's 8254x line of gigabit ethernet controllers.
 */
#include "base/bitfield.hh"

namespace iGbReg {


// Registers used by the Intel GbE NIC
const uint32_t REG_CTRL     = 0x00000;
const uint32_t REG_STATUS   = 0x00008;
const uint32_t REG_EECD     = 0x00010;
const uint32_t REG_EERD     = 0x00014;
const uint32_t REG_CTRL_EXT = 0x00018;
const uint32_t REG_MDIC     = 0x00020;
const uint32_t REG_FCAL     = 0x00028;
const uint32_t REG_FCAH     = 0x0002C;
const uint32_t REG_FCT      = 0x00030;
const uint32_t REG_VET      = 0x00038;
const uint32_t REG_PBA      = 0x01000;
const uint32_t REG_ICR      = 0x000C0;
const uint32_t REG_ITR      = 0x000C4;
const uint32_t REG_ICS      = 0x000C8;
const uint32_t REG_IMS      = 0x000D0;
const uint32_t REG_IMC      = 0x000D8;
const uint32_t REG_IAM      = 0x000E0;
const uint32_t REG_RCTL     = 0x00100;
const uint32_t REG_FCTTV    = 0x00170;
const uint32_t REG_TIPG     = 0x00410;
const uint32_t REG_AIFS     = 0x00458;
const uint32_t REG_LEDCTL   = 0x00e00;
const uint32_t REG_EICR     = 0x01580;
const uint32_t REG_IVAR0    = 0x01700;
const uint32_t REG_FCRTL    = 0x02160;
const uint32_t REG_FCRTH    = 0x02168;
const uint32_t REG_RDBAL    = 0x02800;
const uint32_t REG_RDBAH    = 0x02804;
const uint32_t REG_RDLEN    = 0x02808;
const uint32_t REG_SRRCTL   = 0x0280C;
const uint32_t REG_RDH      = 0x02810;
const uint32_t REG_RDT      = 0x02818;
const uint32_t REG_RDTR     = 0x02820;
const uint32_t REG_RXDCTL   = 0x02828;
const uint32_t REG_RADV     = 0x0282C;
const uint32_t REG_TCTL     = 0x00400;
const uint32_t REG_TDBAL    = 0x03800;
const uint32_t REG_TDBAH    = 0x03804;
const uint32_t REG_TDLEN    = 0x03808;
const uint32_t REG_TDH      = 0x03810;
const uint32_t REG_TXDCA_CTL = 0x03814;
const uint32_t REG_TDT      = 0x03818;
const uint32_t REG_TIDV     = 0x03820;
const uint32_t REG_TXDCTL   = 0x03828;
const uint32_t REG_TADV     = 0x0382C;
const uint32_t REG_TDWBAL   = 0x03838;
const uint32_t REG_TDWBAH   = 0x0383C;
const uint32_t REG_CRCERRS  = 0x04000;
const uint32_t REG_RXCSUM   = 0x05000;
const uint32_t REG_RLPML    = 0x05004;
const uint32_t REG_RFCTL    = 0x05008;
const uint32_t REG_MTA      = 0x05200;
const uint32_t REG_RAL      = 0x05400;
const uint32_t REG_RAH      = 0x05404;
const uint32_t REG_VFTA     = 0x05600;

const uint32_t REG_WUC      = 0x05800;
const uint32_t REG_MANC     = 0x05820;
const uint32_t REG_SWSM     = 0x05B50;
const uint32_t REG_FWSM     = 0x05B54;
const uint32_t REG_SWFWSYNC = 0x05B5C;

const uint8_t EEPROM_READ_OPCODE_SPI    = 0x03;
const uint8_t EEPROM_RDSR_OPCODE_SPI    = 0x05;
const uint8_t EEPROM_SIZE               = 64;
const uint16_t EEPROM_CSUM              = 0xBABA;

const uint8_t VLAN_FILTER_TABLE_SIZE    = 128;
const uint8_t RCV_ADDRESS_TABLE_SIZE    = 24;
const uint8_t MULTICAST_TABLE_SIZE      = 128;
const uint32_t STATS_REGS_SIZE           = 0x228;


// Registers in that are accessed in the PHY
const uint8_t PHY_PSTATUS       = 0x1;
const uint8_t PHY_PID           = 0x2;
const uint8_t PHY_EPID          = 0x3;
const uint8_t PHY_GSTATUS       = 10;
const uint8_t PHY_EPSTATUS      = 15;
const uint8_t PHY_AGC           = 18;

// Receive Descriptor Status Flags
const uint16_t RXDS_DYNINT      = 0x800;
const uint16_t RXDS_UDPV        = 0x400;
const uint16_t RXDS_CRCV        = 0x100;
const uint16_t RXDS_PIF         = 0x080;
const uint16_t RXDS_IPCS        = 0x040;
const uint16_t RXDS_TCPCS       = 0x020;
const uint16_t RXDS_UDPCS       = 0x010;
const uint16_t RXDS_VP          = 0x008;
const uint16_t RXDS_IXSM        = 0x004;
const uint16_t RXDS_EOP         = 0x002;
const uint16_t RXDS_DD          = 0x001;

// Receive Descriptor Error Flags
const uint8_t RXDE_RXE         = 0x80;
const uint8_t RXDE_IPE         = 0x40;
const uint8_t RXDE_TCPE        = 0x20;
const uint8_t RXDE_SEQ         = 0x04;
const uint8_t RXDE_SE          = 0x02;
const uint8_t RXDE_CE          = 0x01;

// Receive Descriptor Extended Error Flags
const uint16_t RXDEE_HBO       = 0x008;
const uint16_t RXDEE_CE        = 0x010;
const uint16_t RXDEE_LE        = 0x020;
const uint16_t RXDEE_PE        = 0x080;
const uint16_t RXDEE_OSE       = 0x100;
const uint16_t RXDEE_USE       = 0x200;
const uint16_t RXDEE_TCPE      = 0x400;
const uint16_t RXDEE_IPE       = 0x800;


// Receive Descriptor Types
const uint8_t RXDT_LEGACY      = 0x00;
const uint8_t RXDT_ADV_ONEBUF  = 0x01;
const uint8_t RXDT_ADV_SPLIT_A = 0x05;

// Receive Descriptor Packet Types
const uint16_t RXDP_IPV4       = 0x001;
const uint16_t RXDP_IPV4E      = 0x002;
const uint16_t RXDP_IPV6       = 0x004;
const uint16_t RXDP_IPV6E      = 0x008;
const uint16_t RXDP_TCP        = 0x010;
const uint16_t RXDP_UDP        = 0x020;
const uint16_t RXDP_SCTP       = 0x040;
const uint16_t RXDP_NFS        = 0x080;

// Interrupt types
enum IntTypes
{
    IT_NONE    = 0x00000, //dummy value
    IT_TXDW    = 0x00001,
    IT_TXQE    = 0x00002,
    IT_LSC     = 0x00004,
    IT_RXSEQ   = 0x00008,
    IT_RXDMT   = 0x00010,
    IT_RXO     = 0x00040,
    IT_RXT     = 0x00080,
    IT_MADC    = 0x00200,
    IT_RXCFG   = 0x00400,
    IT_GPI0    = 0x02000,
    IT_GPI1    = 0x04000,
    IT_TXDLOW  = 0x08000,
    IT_SRPD    = 0x10000,
    IT_ACK     = 0x20000
};

// Receive Descriptor struct
struct RxDesc {
    union { 
        struct {
            Addr buf;
            uint16_t len;
            uint16_t csum;
            uint8_t status;
            uint8_t errors;
            uint16_t vlan;
        } legacy;
        struct {
            Addr pkt;
            Addr hdr;
        } adv_read;
        struct {
            uint16_t rss_type:4;
            uint16_t pkt_type:12;
            uint16_t __reserved1:5;
            uint16_t header_len:10;
            uint16_t sph:1;
            union {
                struct {
                    uint16_t id;
                    uint16_t csum;
                };
                uint32_t rss_hash;
            };
            uint32_t status:20;
            uint32_t errors:12;
            uint16_t pkt_len;
            uint16_t vlan_tag;
        } adv_wb ;
    };
};

struct TxDesc {
    uint64_t d1;
    uint64_t d2;
};

namespace TxdOp {
const uint8_t TXD_CNXT = 0x0;
const uint8_t TXD_DATA = 0x1;
const uint8_t TXD_ADVCNXT = 0x2;
const uint8_t TXD_ADVDATA = 0x3;

bool isLegacy(TxDesc *d) { return !bits(d->d2,29,29); }
uint8_t getType(TxDesc *d) { return bits(d->d2, 23,20); }
bool isType(TxDesc *d, uint8_t type) { return getType(d) == type; }
bool isTypes(TxDesc *d, uint8_t t1, uint8_t t2) { return isType(d, t1) || isType(d, t2); }
bool isAdvDesc(TxDesc *d) { return !isLegacy(d) && isTypes(d, TXD_ADVDATA,TXD_ADVCNXT);  }
bool isContext(TxDesc *d) { return !isLegacy(d) && isTypes(d,TXD_CNXT, TXD_ADVCNXT); }
bool isData(TxDesc *d) { return !isLegacy(d) && isTypes(d, TXD_DATA, TXD_ADVDATA); }

Addr getBuf(TxDesc *d) { assert(isLegacy(d) || isData(d)); return d->d1; }
Addr getLen(TxDesc *d) { if (isLegacy(d)) return bits(d->d2,15,0); else return bits(d->d2, 19,0); }
void setDd(TxDesc *d) { replaceBits(d->d2, 35, 32, ULL(1)); }

bool ide(TxDesc *d)  { return bits(d->d2, 31,31) && (getType(d) == TXD_DATA || isLegacy(d)); }
bool vle(TxDesc *d)  { assert(isLegacy(d) || isData(d)); return bits(d->d2, 30,30); }
bool rs(TxDesc *d)   { return bits(d->d2, 27,27); }
bool ic(TxDesc *d)   { assert(isLegacy(d) || isData(d)); return isLegacy(d) && bits(d->d2, 26,26); }
bool tse(TxDesc *d)  { 
    if (isTypes(d, TXD_CNXT, TXD_DATA))
        return bits(d->d2, 26,26); 
    if (isType(d, TXD_ADVDATA))
        return bits(d->d2, 31, 31);
    return false;
}

bool ifcs(TxDesc *d) { assert(isLegacy(d) || isData(d)); return bits(d->d2, 25,25); }
bool eop(TxDesc *d)  { assert(isLegacy(d) || isData(d)); return bits(d->d2, 24,24); }
bool ip(TxDesc *d)   { assert(isContext(d)); return bits(d->d2, 25,25); }
bool tcp(TxDesc *d)  { assert(isContext(d)); return bits(d->d2, 24,24); }

uint8_t getCso(TxDesc *d) { assert(isLegacy(d)); return bits(d->d2, 23,16); }
uint8_t getCss(TxDesc *d) { assert(isLegacy(d)); return bits(d->d2, 47,40); }

bool ixsm(TxDesc *d)  { return isData(d) && bits(d->d2, 40,40); }
bool txsm(TxDesc *d)  { return isData(d) && bits(d->d2, 41,41); }

int tucse(TxDesc *d) { assert(isContext(d)); return bits(d->d1,63,48); }
int tucso(TxDesc *d) { assert(isContext(d)); return bits(d->d1,47,40); }
int tucss(TxDesc *d) { assert(isContext(d)); return bits(d->d1,39,32); }
int ipcse(TxDesc *d) { assert(isContext(d)); return bits(d->d1,31,16); }
int ipcso(TxDesc *d) { assert(isContext(d)); return bits(d->d1,15,8); }
int ipcss(TxDesc *d) { assert(isContext(d)); return bits(d->d1,7,0); }
int mss(TxDesc *d) { assert(isContext(d)); return bits(d->d2,63,48); }
int hdrlen(TxDesc *d) { 
    assert(isContext(d)); 
    if (!isAdvDesc(d))
        return bits(d->d2,47,40);
    return bits(d->d2, 47,40) + bits(d->d1, 8,0) + bits(d->d1, 15, 9); 
}

int getTsoLen(TxDesc *d) { assert(isType(d, TXD_ADVDATA)); return bits(d->d2, 63,46); }
int utcmd(TxDesc *d) { assert(isContext(d)); return bits(d->d2,24,31); }
} // namespace TxdOp


#define ADD_FIELD32(NAME, OFFSET, BITS) \
    inline uint32_t NAME() { return bits(_data, OFFSET+BITS-1, OFFSET); } \
    inline void NAME(uint32_t d) { replaceBits(_data, OFFSET+BITS-1, OFFSET,d); }

#define ADD_FIELD64(NAME, OFFSET, BITS) \
    inline uint64_t NAME() { return bits(_data, OFFSET+BITS-1, OFFSET); } \
    inline void NAME(uint64_t d) { replaceBits(_data, OFFSET+BITS-1, OFFSET,d); }

struct Regs {
    template<class T>
    struct Reg {
        T _data;
        T operator()() { return _data; }
        const Reg<T> &operator=(T d) { _data = d; return *this;}
        bool operator==(T d) { return d == _data; }
        void operator()(T d) { _data = d; }
        Reg() { _data = 0; }
        void serialize(std::ostream &os)
        {
            SERIALIZE_SCALAR(_data);
        }
        void unserialize(Checkpoint *cp, const std::string &section)
        {
            UNSERIALIZE_SCALAR(_data);
        }
    };

    struct CTRL : public Reg<uint32_t> { // 0x0000 CTRL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(fd,0,1);       // full duplex
        ADD_FIELD32(bem,1,1);      // big endian mode
        ADD_FIELD32(pcipr,2,1);    // PCI priority
        ADD_FIELD32(lrst,3,1);     // link reset
        ADD_FIELD32(tme,4,1);      // test mode enable
        ADD_FIELD32(asde,5,1);     // Auto-speed detection
        ADD_FIELD32(slu,6,1);      // Set link up
        ADD_FIELD32(ilos,7,1);     // invert los-of-signal
        ADD_FIELD32(speed,8,2);    // speed selection bits
        ADD_FIELD32(be32,10,1);    // big endian mode 32
        ADD_FIELD32(frcspd,11,1);  // force speed
        ADD_FIELD32(frcdpx,12,1);  // force duplex
        ADD_FIELD32(duden,13,1);   // dock/undock enable
        ADD_FIELD32(dudpol,14,1);  // dock/undock polarity
        ADD_FIELD32(fphyrst,15,1); // force phy reset
        ADD_FIELD32(extlen,16,1);  // external link status enable
        ADD_FIELD32(rsvd,17,1);    // reserved
        ADD_FIELD32(sdp0d,18,1);   // software controlled pin data
        ADD_FIELD32(sdp1d,19,1);   // software controlled pin data
        ADD_FIELD32(sdp2d,20,1);   // software controlled pin data
        ADD_FIELD32(sdp3d,21,1);   // software controlled pin data
        ADD_FIELD32(sdp0i,22,1);   // software controlled pin dir
        ADD_FIELD32(sdp1i,23,1);   // software controlled pin dir
        ADD_FIELD32(sdp2i,24,1);   // software controlled pin dir
        ADD_FIELD32(sdp3i,25,1);   // software controlled pin dir
        ADD_FIELD32(rst,26,1);     // reset
        ADD_FIELD32(rfce,27,1);    // receive flow control enable
        ADD_FIELD32(tfce,28,1);    // transmit flow control enable
        ADD_FIELD32(rte,29,1);     // routing tag enable
        ADD_FIELD32(vme,30,1);     // vlan enable
        ADD_FIELD32(phyrst,31,1);  // phy reset
    };
    CTRL ctrl;

    struct STATUS : public Reg<uint32_t> { // 0x0008 STATUS Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(fd,0,1);       // full duplex
        ADD_FIELD32(lu,1,1);       // link up
        ADD_FIELD32(func,2,2);     // function id
        ADD_FIELD32(txoff,4,1);    // transmission paused
        ADD_FIELD32(tbimode,5,1);  // tbi mode
        ADD_FIELD32(speed,6,2);    // link speed
        ADD_FIELD32(asdv,8,2);     // auto speed detection value
        ADD_FIELD32(mtxckok,10,1); // mtx clock running ok
        ADD_FIELD32(pci66,11,1);   // In 66Mhz pci slot
        ADD_FIELD32(bus64,12,1);   // in 64 bit slot
        ADD_FIELD32(pcix,13,1);    // Pci mode
        ADD_FIELD32(pcixspd,14,2); // pci x speed
    };
    STATUS sts;

    struct EECD : public Reg<uint32_t> { // 0x0010 EECD Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(sk,0,1);       // clack input to the eeprom
        ADD_FIELD32(cs,1,1);       // chip select to eeprom
        ADD_FIELD32(din,2,1);      // data input to eeprom
        ADD_FIELD32(dout,3,1);     // data output bit
        ADD_FIELD32(fwe,4,2);      // flash write enable
        ADD_FIELD32(ee_req,6,1);   // request eeprom access
        ADD_FIELD32(ee_gnt,7,1);   // grant eeprom access
        ADD_FIELD32(ee_pres,8,1);  // eeprom present
        ADD_FIELD32(ee_size,9,1);  // eeprom size
        ADD_FIELD32(ee_sz1,10,1);  // eeprom size
        ADD_FIELD32(rsvd,11,2);    // reserved
        ADD_FIELD32(ee_type,13,1); // type of eeprom
    } ;
    EECD eecd;

    struct EERD : public Reg<uint32_t> { // 0x0014 EERD Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(start,0,1);  // start read
        ADD_FIELD32(done,1,1);   // done read
        ADD_FIELD32(addr,2,14);   // address
        ADD_FIELD32(data,16,16); // data
    };
    EERD eerd;

    struct CTRL_EXT : public Reg<uint32_t> { // 0x0018 CTRL_EXT Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(gpi_en,0,4);      // enable interrupts from gpio
        ADD_FIELD32(phyint,5,1);      // reads the phy internal int status
        ADD_FIELD32(sdp2_data,6,1);   // data from gpio sdp
        ADD_FIELD32(spd3_data,7,1);   // data frmo gpio sdp
        ADD_FIELD32(spd2_iodir,10,1); // direction of sdp2
        ADD_FIELD32(spd3_iodir,11,1); // direction of sdp2
        ADD_FIELD32(asdchk,12,1);     // initiate auto-speed-detection
        ADD_FIELD32(eerst,13,1);      // reset the eeprom
        ADD_FIELD32(spd_byps,15,1);   // bypass speed select
        ADD_FIELD32(ro_dis,17,1);     // disable relaxed memory ordering
        ADD_FIELD32(vreg,21,1);       // power down the voltage regulator
        ADD_FIELD32(link_mode,22,2);  // interface to talk to the link
        ADD_FIELD32(iame, 27,1);      // interrupt acknowledge auto-mask ??
        ADD_FIELD32(drv_loaded, 28,1);// driver is loaded and incharge of device
        ADD_FIELD32(timer_clr, 29,1); // clear interrupt timers after IMS clear ??
    };
    CTRL_EXT ctrl_ext;

    struct MDIC : public Reg<uint32_t> { // 0x0020 MDIC Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(data,0,16);   // data
        ADD_FIELD32(regadd,16,5); // register address
        ADD_FIELD32(phyadd,21,5); // phy addresses
        ADD_FIELD32(op,26,2);     // opcode
        ADD_FIELD32(r,28,1);      // ready
        ADD_FIELD32(i,29,1);      // interrupt
        ADD_FIELD32(e,30,1);      // error
    };
    MDIC mdic;

    struct ICR : public Reg<uint32_t> { // 0x00C0 ICR Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(txdw,0,1)   // tx descr witten back
        ADD_FIELD32(txqe,1,1)   // tx queue empty
        ADD_FIELD32(lsc,2,1)    // link status change
        ADD_FIELD32(rxseq,3,1)  // rcv sequence error
        ADD_FIELD32(rxdmt0,4,1) // rcv descriptor min thresh
        ADD_FIELD32(rsvd1,5,1)  // reserved
        ADD_FIELD32(rxo,6,1)    // receive overrunn
        ADD_FIELD32(rxt0,7,1)   // receiver timer interrupt
        ADD_FIELD32(mdac,9,1)   // mdi/o access complete
        ADD_FIELD32(rxcfg,10,1)  // recv /c/ ordered sets
        ADD_FIELD32(phyint,12,1) // phy interrupt
        ADD_FIELD32(gpi1,13,1)   // gpi int 1
        ADD_FIELD32(gpi2,14,1)   // gpi int 2
        ADD_FIELD32(txdlow,15,1) // transmit desc low thresh
        ADD_FIELD32(srpd,16,1)   // small receive packet detected
        ADD_FIELD32(ack,17,1);    // receive ack frame
        ADD_FIELD32(int_assert, 31,1); // interrupt caused a system interrupt
    };
    ICR icr;

    uint32_t imr; // register that contains the current interrupt mask

    struct ITR : public Reg<uint32_t> { // 0x00C4 ITR Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(interval, 0,16); // minimum inter-interrutp inteval
                                     // specified in 256ns interrupts
    };
    ITR itr;

    // When CTRL_EXT.IAME and the ICR.INT_ASSERT is 1 an ICR read or write
    // causes the IAM register contents to be written into the IMC
    // automatically clearing all interrupts that have a bit in the IAM set
    uint32_t iam;

    struct RCTL : public Reg<uint32_t> { // 0x0100 RCTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(rst,0,1);   // Reset
        ADD_FIELD32(en,1,1);    // Enable
        ADD_FIELD32(sbp,2,1);   // Store bad packets
        ADD_FIELD32(upe,3,1);   // Unicast Promiscuous enabled
        ADD_FIELD32(mpe,4,1);   // Multicast promiscuous enabled
        ADD_FIELD32(lpe,5,1);   // long packet reception enabled
        ADD_FIELD32(lbm,6,2);   //
        ADD_FIELD32(rdmts,8,2); //
        ADD_FIELD32(mo,12,2);    //
        ADD_FIELD32(mdr,14,1);   //
        ADD_FIELD32(bam,15,1);   //
        ADD_FIELD32(bsize,16,2); //
        ADD_FIELD32(vfe,18,1);   //
        ADD_FIELD32(cfien,19,1); //
        ADD_FIELD32(cfi,20,1);   //
        ADD_FIELD32(dpf,22,1);   // discard pause frames
        ADD_FIELD32(pmcf,23,1);  // pass mac control  frames
        ADD_FIELD32(bsex,25,1);  // buffer size extension
        ADD_FIELD32(secrc,26,1); // strip ethernet crc from incoming packet
        unsigned descSize()
        {
            switch(bsize()) {
                case 0: return bsex() == 0 ? 2048 : -1;
                case 1: return bsex() == 0 ? 1024 : 16384;
                case 2: return bsex() == 0 ? 512 : 8192;
                case 3: return bsex() == 0 ? 256 : 4096;
                default:
                        return -1;
            }
        }
    };
    RCTL rctl;

    struct FCTTV : public Reg<uint32_t> { // 0x0170 FCTTV
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(ttv,0,16);    // Transmit Timer Value
    };
    FCTTV fcttv;

    struct TCTL : public Reg<uint32_t> { // 0x0400 TCTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(rst,0,1);    // Reset
        ADD_FIELD32(en,1,1);     // Enable
        ADD_FIELD32(bce,2,1);    // busy check enable
        ADD_FIELD32(psp,3,1);    // pad short packets
        ADD_FIELD32(ct,4,8);     // collision threshold
        ADD_FIELD32(cold,12,10); // collision distance
        ADD_FIELD32(swxoff,22,1); // software xoff transmission
        ADD_FIELD32(pbe,23,1);    // packet burst enable
        ADD_FIELD32(rtlc,24,1);   // retransmit late collisions
        ADD_FIELD32(nrtu,25,1);   // on underrun no TX
        ADD_FIELD32(mulr,26,1);   // multiple request
    };
    TCTL tctl;

    struct PBA : public Reg<uint32_t> { // 0x1000 PBA Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(rxa,0,16);
        ADD_FIELD32(txa,16,16);
    };
    PBA pba;

    struct FCRTL : public Reg<uint32_t> { // 0x2160 FCRTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(rtl,3,28); // make this bigger than the spec so we can have
                               // a larger buffer
        ADD_FIELD32(xone, 31,1);
    };
    FCRTL fcrtl;

    struct FCRTH : public Reg<uint32_t> { // 0x2168 FCRTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(rth,3,13); // make this bigger than the spec so we can have
                               //a larger buffer
        ADD_FIELD32(xfce, 31,1);
    };
    FCRTH fcrth;

    struct RDBA : public Reg<uint64_t> { // 0x2800 RDBA Register
        using Reg<uint64_t>::operator=;
        ADD_FIELD64(rdbal,0,32); // base address of rx descriptor ring
        ADD_FIELD64(rdbah,32,32); // base address of rx descriptor ring
    };
    RDBA rdba;

    struct RDLEN : public Reg<uint32_t> { // 0x2808 RDLEN Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(len,7,13); // number of bytes in the descriptor buffer
    };
    RDLEN rdlen;

    struct SRRCTL : public Reg<uint32_t> { // 0x280C SRRCTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(pktlen, 0, 8);
        ADD_FIELD32(hdrlen, 8, 8); // guess based on header, not documented
        ADD_FIELD32(desctype, 25,3); // type of descriptor 000 legacy, 001 adv,
                                     //101 hdr split
        unsigned bufLen() { return pktlen() << 10; }
        unsigned hdrLen() { return hdrlen() << 6; }
    };
    SRRCTL srrctl;

    struct RDH : public Reg<uint32_t> { // 0x2810 RDH Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(rdh,0,16); // head of the descriptor ring
    };
    RDH rdh;

    struct RDT : public Reg<uint32_t> { // 0x2818 RDT Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(rdt,0,16); // tail of the descriptor ring
    };
    RDT rdt;

    struct RDTR : public Reg<uint32_t> { // 0x2820 RDTR Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(delay,0,16); // receive delay timer
        ADD_FIELD32(fpd, 31,1);   // flush partial descriptor block ??
    };
    RDTR rdtr;

    struct RXDCTL : public Reg<uint32_t> { // 0x2828 RXDCTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(pthresh,0,6);   // prefetch threshold, less that this
                                    // consider prefetch
        ADD_FIELD32(hthresh,8,6);   // number of descriptors in host mem to
                                    // consider prefetch
        ADD_FIELD32(wthresh,16,6);  // writeback threshold
        ADD_FIELD32(gran,24,1);     // granularity 0 = desc, 1 = cacheline
    };
    RXDCTL rxdctl;

    struct RADV : public Reg<uint32_t> { // 0x282C RADV Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(idv,0,16); // absolute interrupt delay
    };
    RADV radv;

    struct RSRPD : public Reg<uint32_t> { // 0x2C00 RSRPD Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(idv,0,12); // size to interrutp on small packets
    };
    RSRPD rsrpd;

    struct TDBA : public Reg<uint64_t> { // 0x3800 TDBAL Register
        using Reg<uint64_t>::operator=;
        ADD_FIELD64(tdbal,0,32); // base address of transmit descriptor ring
        ADD_FIELD64(tdbah,32,32); // base address of transmit descriptor ring
    };
    TDBA tdba;

    struct TDLEN : public Reg<uint32_t> { // 0x3808 TDLEN Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(len,7,13); // number of bytes in the descriptor buffer
    };
    TDLEN tdlen;

    struct TDH : public Reg<uint32_t> { // 0x3810 TDH Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(tdh,0,16); // head of the descriptor ring
    };
    TDH tdh;

    struct TXDCA_CTL : public Reg<uint32_t> { // 0x3814 TXDCA_CTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(cpu_mask, 0, 5);
        ADD_FIELD32(enabled, 5,1);
        ADD_FIELD32(relax_ordering, 6, 1);
    };
    TXDCA_CTL txdca_ctl;

    struct TDT : public Reg<uint32_t> { // 0x3818 TDT Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(tdt,0,16); // tail of the descriptor ring
    };
    TDT tdt;

    struct TIDV : public Reg<uint32_t> { // 0x3820 TIDV Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(idv,0,16); // interrupt delay
    };
    TIDV tidv;

    struct TXDCTL : public Reg<uint32_t> { // 0x3828 TXDCTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(pthresh, 0,6);  // if number of descriptors control has is
                                    // below this number, a prefetch is considered
        ADD_FIELD32(hthresh,8,8);   // number of valid descriptors is host memory
                                    // before a prefetch is considered
        ADD_FIELD32(wthresh,16,6);  // number of descriptors to keep until
                                    // writeback is considered
        ADD_FIELD32(gran, 24,1);    // granulatiry of above values (0 = cacheline,
                                    // 1 == desscriptor)
        ADD_FIELD32(lwthresh,25,7); // xmit descriptor low thresh, interrupt
                                    // below this level
    };
    TXDCTL txdctl;

    struct TADV : public Reg<uint32_t> { // 0x382C TADV Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(idv,0,16); // absolute interrupt delay
    };
    TADV tadv;
/*
    struct TDWBA : public Reg<uint64_t> { // 0x3838 TDWBA Register
        using Reg<uint64_t>::operator=;
        ADD_FIELD64(en,0,1); // enable  transmit description ring address writeback
        ADD_FIELD64(tdwbal,2,32); // base address of transmit descriptor ring address writeback
        ADD_FIELD64(tdwbah,32,32); // base address of transmit descriptor ring
    };
    TDWBA tdwba;*/
    uint64_t tdwba;

    struct RXCSUM : public Reg<uint32_t> { // 0x5000 RXCSUM Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(pcss,0,8);
        ADD_FIELD32(ipofld,8,1);
        ADD_FIELD32(tuofld,9,1);
        ADD_FIELD32(pcsd, 13,1);
    };
    RXCSUM rxcsum;

    uint32_t rlpml; // 0x5004 RLPML probably maximum accepted packet size

    struct RFCTL : public Reg<uint32_t> { // 0x5008 RFCTL Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(iscsi_dis,0,1);
        ADD_FIELD32(iscsi_dwc,1,5);
        ADD_FIELD32(nfsw_dis,6,1);
        ADD_FIELD32(nfsr_dis,7,1);
        ADD_FIELD32(nfs_ver,8,2);
        ADD_FIELD32(ipv6_dis,10,1);
        ADD_FIELD32(ipv6xsum_dis,11,1);
        ADD_FIELD32(ackdis,13,1);
        ADD_FIELD32(ipfrsp_dis,14,1);
        ADD_FIELD32(exsten,15,1);
    };
    RFCTL rfctl;

    struct MANC : public Reg<uint32_t> { // 0x5820 MANC Register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(smbus,0,1);    // SMBus enabled #####
        ADD_FIELD32(asf,1,1);      // ASF enabled #####
        ADD_FIELD32(ronforce,2,1); // reset of force
        ADD_FIELD32(rsvd,3,5);     // reserved
        ADD_FIELD32(rmcp1,8,1);    // rcmp1 filtering
        ADD_FIELD32(rmcp2,9,1);    // rcmp2 filtering
        ADD_FIELD32(ipv4,10,1);     // enable ipv4
        ADD_FIELD32(ipv6,11,1);     // enable ipv6
        ADD_FIELD32(snap,12,1);     // accept snap
        ADD_FIELD32(arp,13,1);      // filter arp #####
        ADD_FIELD32(neighbor,14,1); // neighbor discovery
        ADD_FIELD32(arp_resp,15,1); // arp response
        ADD_FIELD32(tcorst,16,1);   // tco reset happened
        ADD_FIELD32(rcvtco,17,1);   // receive tco enabled ######
        ADD_FIELD32(blkphyrst,18,1);// block phy resets ########
        ADD_FIELD32(rcvall,19,1);   // receive all
        ADD_FIELD32(macaddrfltr,20,1); // mac address filtering ######
        ADD_FIELD32(mng2host,21,1); // mng2 host packets #######
        ADD_FIELD32(ipaddrfltr,22,1); // ip address filtering
        ADD_FIELD32(xsumfilter,23,1); // checksum filtering
        ADD_FIELD32(brfilter,24,1); // broadcast filtering
        ADD_FIELD32(smbreq,25,1);   // smb request
        ADD_FIELD32(smbgnt,26,1);   // smb grant
        ADD_FIELD32(smbclkin,27,1); // smbclkin
        ADD_FIELD32(smbdatain,28,1); // smbdatain
        ADD_FIELD32(smbdataout,29,1); // smb data out
        ADD_FIELD32(smbclkout,30,1); // smb clock out
    };
    MANC manc;

    struct SWSM : public Reg<uint32_t> { // 0x5B50 SWSM register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(smbi,0,1); // Semaphone bit
        ADD_FIELD32(swesmbi, 1,1); // Software eeporm semaphore
        ADD_FIELD32(wmng, 2,1); // Wake MNG clock
        ADD_FIELD32(reserved, 3, 29);
    };
    SWSM swsm;

    struct FWSM : public Reg<uint32_t> { // 0x5B54 FWSM register
        using Reg<uint32_t>::operator=;
        ADD_FIELD32(eep_fw_semaphore,0,1); 
        ADD_FIELD32(fw_mode, 1,3); 
        ADD_FIELD32(ide, 4,1); 
        ADD_FIELD32(sol, 5,1);
        ADD_FIELD32(eep_roload, 6,1);
        ADD_FIELD32(reserved, 7,8);
        ADD_FIELD32(fw_val_bit, 15, 1);
        ADD_FIELD32(reset_cnt, 16, 3);
        ADD_FIELD32(ext_err_ind, 19, 6);
        ADD_FIELD32(reserved2, 25, 7);
    };
    FWSM fwsm;

    uint32_t sw_fw_sync;

    void serialize(std::ostream &os)
    {
        paramOut(os, "ctrl", ctrl._data);
        paramOut(os, "sts", sts._data);
        paramOut(os, "eecd", eecd._data);
        paramOut(os, "eerd", eerd._data);
        paramOut(os, "ctrl_ext", ctrl_ext._data);
        paramOut(os, "mdic", mdic._data);
        paramOut(os, "icr", icr._data);
        SERIALIZE_SCALAR(imr);
        paramOut(os, "itr", itr._data);
        SERIALIZE_SCALAR(iam);
        paramOut(os, "rctl", rctl._data);
        paramOut(os, "fcttv", fcttv._data);
        paramOut(os, "tctl", tctl._data);
        paramOut(os, "pba", pba._data);
        paramOut(os, "fcrtl", fcrtl._data);
        paramOut(os, "fcrth", fcrth._data);
        paramOut(os, "rdba", rdba._data);
        paramOut(os, "rdlen", rdlen._data);
        paramOut(os, "srrctl", srrctl._data);
        paramOut(os, "rdh", rdh._data);
        paramOut(os, "rdt", rdt._data);
        paramOut(os, "rdtr", rdtr._data);
        paramOut(os, "rxdctl", rxdctl._data);
        paramOut(os, "radv", radv._data);
        paramOut(os, "rsrpd", rsrpd._data);
        paramOut(os, "tdba", tdba._data);
        paramOut(os, "tdlen", tdlen._data);
        paramOut(os, "tdh", tdh._data);
        paramOut(os, "txdca_ctl", txdca_ctl._data);
        paramOut(os, "tdt", tdt._data);
        paramOut(os, "tidv", tidv._data);
        paramOut(os, "txdctl", txdctl._data);
        paramOut(os, "tadv", tadv._data);
        //paramOut(os, "tdwba", tdwba._data);
        SERIALIZE_SCALAR(tdwba);
        paramOut(os, "rxcsum", rxcsum._data);
        SERIALIZE_SCALAR(rlpml);
        paramOut(os, "rfctl", rfctl._data);
        paramOut(os, "manc", manc._data);
        paramOut(os, "swsm", swsm._data);
        paramOut(os, "fwsm", fwsm._data);
        SERIALIZE_SCALAR(sw_fw_sync);
    }

    void unserialize(Checkpoint *cp, const std::string &section)
    {
        paramIn(cp, section, "ctrl", ctrl._data);
        paramIn(cp, section, "sts", sts._data);
        paramIn(cp, section, "eecd", eecd._data);
        paramIn(cp, section, "eerd", eerd._data);
        paramIn(cp, section, "ctrl_ext", ctrl_ext._data);
        paramIn(cp, section, "mdic", mdic._data);
        paramIn(cp, section, "icr", icr._data);
        UNSERIALIZE_SCALAR(imr);
        paramIn(cp, section, "itr", itr._data);
        UNSERIALIZE_SCALAR(iam);
        paramIn(cp, section, "rctl", rctl._data);
        paramIn(cp, section, "fcttv", fcttv._data);
        paramIn(cp, section, "tctl", tctl._data);
        paramIn(cp, section, "pba", pba._data);
        paramIn(cp, section, "fcrtl", fcrtl._data);
        paramIn(cp, section, "fcrth", fcrth._data);
        paramIn(cp, section, "rdba", rdba._data);
        paramIn(cp, section, "rdlen", rdlen._data);
        paramIn(cp, section, "srrctl", srrctl._data);
        paramIn(cp, section, "rdh", rdh._data);
        paramIn(cp, section, "rdt", rdt._data);
        paramIn(cp, section, "rdtr", rdtr._data);
        paramIn(cp, section, "rxdctl", rxdctl._data);
        paramIn(cp, section, "radv", radv._data);
        paramIn(cp, section, "rsrpd", rsrpd._data);
        paramIn(cp, section, "tdba", tdba._data);
        paramIn(cp, section, "tdlen", tdlen._data);
        paramIn(cp, section, "tdh", tdh._data);
        paramIn(cp, section, "txdca_ctl", txdca_ctl._data);
        paramIn(cp, section, "tdt", tdt._data);
        paramIn(cp, section, "tidv", tidv._data);
        paramIn(cp, section, "txdctl", txdctl._data);
        paramIn(cp, section, "tadv", tadv._data);
        UNSERIALIZE_SCALAR(tdwba);
        //paramIn(cp, section, "tdwba", tdwba._data);
        paramIn(cp, section, "rxcsum", rxcsum._data);
        UNSERIALIZE_SCALAR(rlpml);
        paramIn(cp, section, "rfctl", rfctl._data);
        paramIn(cp, section, "manc", manc._data);
        paramIn(cp, section, "swsm", swsm._data);
        paramIn(cp, section, "fwsm", fwsm._data);
        UNSERIALIZE_SCALAR(sw_fw_sync);
    }
};
} // iGbReg namespace