/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi * Andrew Schultz * Miguel Serrano */ #include "dev/mc146818.hh" #include #include #include #include "base/bitfield.hh" #include "base/time.hh" #include "base/trace.hh" #include "debug/MC146818.hh" #include "dev/rtcreg.h" using namespace std; static uint8_t bcdize(uint8_t val) { uint8_t result; result = val % 10; result += (val / 10) << 4; return result; } static uint8_t unbcdize(uint8_t val) { uint8_t result; result = val & 0xf; result += (val >> 4) * 10; return result; } void MC146818::setTime(const struct tm time) { curTime = time; year = time.tm_year; // Unix is 0-11 for month, data seet says start at 1 mon = time.tm_mon + 1; mday = time.tm_mday; hour = time.tm_hour; min = time.tm_min; sec = time.tm_sec; // Datasheet says 1 is sunday wday = time.tm_wday + 1; if (!stat_regB.dm) { // The datasheet says that the year field can be either BCD or // years since 1900. Linux seems to be happy with years since // 1900. year = bcdize(year % 100); mon = bcdize(mon); mday = bcdize(mday); hour = bcdize(hour); min = bcdize(min); sec = bcdize(sec); } } MC146818::MC146818(EventManager *em, const string &n, const struct tm time, bool bcd, Tick frequency) : EventManager(em), _name(n), event(this, frequency), tickEvent(this) { memset(clock_data, 0, sizeof(clock_data)); stat_regA = 0; stat_regA.dv = RTCA_DV_32768HZ; stat_regA.rs = RTCA_RS_1024HZ; stat_regB = 0; stat_regB.pie = 1; stat_regB.format24h = 1; stat_regB.dm = bcd ? 0 : 1; setTime(time); DPRINTFN("Real-time clock set to %s", asctime(&time)); } MC146818::~MC146818() { deschedule(tickEvent); deschedule(event); } bool MC146818::rega_dv_disabled(const RtcRegA ®) { return reg.dv == RTCA_DV_DISABLED0 || reg.dv == RTCA_DV_DISABLED1; } void MC146818::startup() { assert(!event.scheduled()); assert(!tickEvent.scheduled()); if (stat_regB.pie) schedule(event, curTick() + event.offset); if (!rega_dv_disabled(stat_regA)) schedule(tickEvent, curTick() + tickEvent.offset); } void MC146818::writeData(const uint8_t addr, const uint8_t data) { bool panic_unsupported(false); if (addr < RTC_STAT_REGA) { clock_data[addr] = data; curTime.tm_sec = unbcdize(sec); curTime.tm_min = unbcdize(min); curTime.tm_hour = unbcdize(hour); curTime.tm_mday = unbcdize(mday); curTime.tm_mon = unbcdize(mon) - 1; curTime.tm_year = ((unbcdize(year) + 50) % 100) + 1950; curTime.tm_wday = unbcdize(wday) - 1; } else { switch (addr) { case RTC_STAT_REGA: { RtcRegA old_rega(stat_regA); stat_regA = data; // The "update in progress" bit is read only. stat_regA.uip = old_rega; if (!rega_dv_disabled(stat_regA) && stat_regA.dv != RTCA_DV_32768HZ) { inform("RTC: Unimplemented divider configuration: %i\n", stat_regA.dv); panic_unsupported = true; } if (stat_regA.rs != RTCA_RS_1024HZ) { inform("RTC: Unimplemented interrupt rate: %i\n", stat_regA.rs); panic_unsupported = true; } if (rega_dv_disabled(stat_regA)) { // The divider is disabled, make sure that we don't // schedule any ticks. if (tickEvent.scheduled()) deschedule(tickEvent); } else if (rega_dv_disabled(old_rega)) { // According to the specification, the next tick // happens after 0.5s when the divider chain goes // from reset to active. So, we simply schedule the // tick after 0.5s. assert(!tickEvent.scheduled()); schedule(tickEvent, curTick() + SimClock::Int::s / 2); } } break; case RTC_STAT_REGB: stat_regB = data; if (stat_regB.aie || stat_regB.uie) { inform("RTC: Unimplemented interrupt configuration: %s %s\n", stat_regB.aie ? "alarm" : "", stat_regB.uie ? "update" : ""); panic_unsupported = true; } if (stat_regB.dm) { inform("RTC: The binary interface is not fully implemented.\n"); panic_unsupported = true; } if (!stat_regB.format24h) { inform("RTC: The 12h time format not supported.\n"); panic_unsupported = true; } if (stat_regB.dse) { inform("RTC: Automatic daylight saving time not supported.\n"); panic_unsupported = true; } if (stat_regB.pie) { if (!event.scheduled()) event.scheduleIntr(); } else { if (event.scheduled()) deschedule(event); } break; case RTC_STAT_REGC: case RTC_STAT_REGD: panic("RTC status registers C and D are not implemented.\n"); break; } } if (panic_unsupported) panic("Unimplemented RTC configuration!\n"); } uint8_t MC146818::readData(uint8_t addr) { if (addr < RTC_STAT_REGA) return clock_data[addr]; else { switch (addr) { case RTC_STAT_REGA: // toggle UIP bit for linux stat_regA.uip = !stat_regA.uip; return stat_regA; break; case RTC_STAT_REGB: return stat_regB; break; case RTC_STAT_REGC: case RTC_STAT_REGD: return 0x00; break; default: panic("Shouldn't be here"); } } } void MC146818::tickClock() { assert(!rega_dv_disabled(stat_regA)); if (stat_regB.set) return; time_t calTime = mkutctime(&curTime); calTime++; setTime(*gmtime(&calTime)); } void MC146818::serialize(const string &base, CheckpointOut &cp) const { uint8_t regA_serial(stat_regA); uint8_t regB_serial(stat_regB); arrayParamOut(cp, base + ".clock_data", clock_data, sizeof(clock_data)); paramOut(cp, base + ".stat_regA", (uint8_t)regA_serial); paramOut(cp, base + ".stat_regB", (uint8_t)regB_serial); // // save the timer tick and rtc clock tick values to correctly reschedule // them during unserialize // Tick rtcTimerInterruptTickOffset = event.when() - curTick(); SERIALIZE_SCALAR(rtcTimerInterruptTickOffset); Tick rtcClockTickOffset = tickEvent.when() - curTick(); SERIALIZE_SCALAR(rtcClockTickOffset); } void MC146818::unserialize(const string &base, CheckpointIn &cp) { uint8_t tmp8; arrayParamIn(cp, base + ".clock_data", clock_data, sizeof(clock_data)); paramIn(cp, base + ".stat_regA", tmp8); stat_regA = tmp8; paramIn(cp, base + ".stat_regB", tmp8); stat_regB = tmp8; // // properly schedule the timer and rtc clock events // Tick rtcTimerInterruptTickOffset; UNSERIALIZE_SCALAR(rtcTimerInterruptTickOffset); event.offset = rtcTimerInterruptTickOffset; Tick rtcClockTickOffset; UNSERIALIZE_SCALAR(rtcClockTickOffset); tickEvent.offset = rtcClockTickOffset; } MC146818::RTCEvent::RTCEvent(MC146818 * _parent, Tick i) : parent(_parent), interval(i), offset(i) { DPRINTF(MC146818, "RTC Event Initilizing\n"); } void MC146818::RTCEvent::scheduleIntr() { parent->schedule(this, curTick() + interval); } void MC146818::RTCEvent::process() { DPRINTF(MC146818, "RTC Timer Interrupt\n"); parent->schedule(this, curTick() + interval); parent->handleEvent(); } const char * MC146818::RTCEvent::description() const { return "RTC interrupt"; } void MC146818::RTCTickEvent::process() { DPRINTF(MC146818, "RTC clock tick\n"); parent->schedule(this, curTick() + SimClock::Int::s); parent->tickClock(); } const char * MC146818::RTCTickEvent::description() const { return "RTC clock tick"; }