/*
 * Copyright (c) 2004-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Ali Saidi
 *          Andrew Schultz
 *          Miguel Serrano
 */

#include <sys/time.h>

#include <ctime>
#include <string>

#include "base/bitfield.hh"
#include "base/time.hh"
#include "base/trace.hh"
#include "debug/MC146818.hh"
#include "dev/mc146818.hh"
#include "dev/rtcreg.h"

using namespace std;

static uint8_t
bcdize(uint8_t val)
{
    uint8_t result;
    result = val % 10;
    result += (val / 10) << 4;
    return result;
}

static uint8_t
unbcdize(uint8_t val)
{
    uint8_t result;
    result = val & 0xf;
    result += (val >> 4) * 10;
    return result;
}

void
MC146818::setTime(const struct tm time)
{
    curTime = time;
    year = time.tm_year;
    // Unix is 0-11 for month, data seet says start at 1
    mon = time.tm_mon + 1;
    mday = time.tm_mday;
    hour = time.tm_hour;
    min = time.tm_min;
    sec = time.tm_sec;

    // Datasheet says 1 is sunday
    wday = time.tm_wday + 1;

    if (!stat_regB.dm) {
        // The datasheet says that the year field can be either BCD or
        // years since 1900.  Linux seems to be happy with years since
        // 1900.
        year = bcdize(year % 100);
        mon = bcdize(mon);
        mday = bcdize(mday);
        hour = bcdize(hour);
        min = bcdize(min);
        sec = bcdize(sec);
    }
}

MC146818::MC146818(EventManager *em, const string &n, const struct tm time,
                   bool bcd, Tick frequency)
    : EventManager(em), _name(n), event(this, frequency), tickEvent(this)
{
    memset(clock_data, 0, sizeof(clock_data));

    stat_regA = 0;
    stat_regA.dv = RTCA_DV_32768HZ;
    stat_regA.rs = RTCA_RS_1024HZ;

    stat_regB = 0;
    stat_regB.pie = 1;
    stat_regB.format24h = 1;
    stat_regB.dm = bcd ? 0 : 1;

    setTime(time);
    DPRINTFN("Real-time clock set to %s", asctime(&time));
}

MC146818::~MC146818()
{
    deschedule(tickEvent);
    deschedule(event);
}

bool
MC146818::rega_dv_disabled(const RtcRegA &reg)
{
    return reg.dv == RTCA_DV_DISABLED0 ||
        reg.dv == RTCA_DV_DISABLED1;
}

void
MC146818::writeData(const uint8_t addr, const uint8_t data)
{
    bool panic_unsupported(false);

    if (addr < RTC_STAT_REGA) {
        clock_data[addr] = data;
        curTime.tm_sec = unbcdize(sec);
        curTime.tm_min = unbcdize(min);
        curTime.tm_hour = unbcdize(hour);
        curTime.tm_mday = unbcdize(mday);
        curTime.tm_mon = unbcdize(mon) - 1;
        curTime.tm_year = ((unbcdize(year) + 50) % 100) + 1950;
        curTime.tm_wday = unbcdize(wday) - 1;
    } else {
        switch (addr) {
          case RTC_STAT_REGA: {
              RtcRegA old_rega(stat_regA);
              stat_regA = data;
              // The "update in progress" bit is read only.
              stat_regA.uip = old_rega;

              if (!rega_dv_disabled(stat_regA) &&
                  stat_regA.dv != RTCA_DV_32768HZ) {
                  inform("RTC: Unimplemented divider configuration: %i\n",
                        stat_regA.dv);
                  panic_unsupported = true;
              }

              if (stat_regA.rs != RTCA_RS_1024HZ) {
                  inform("RTC: Unimplemented interrupt rate: %i\n",
                        stat_regA.rs);
                  panic_unsupported = true;
              }

              if (rega_dv_disabled(stat_regA)) {
                  // The divider is disabled, make sure that we don't
                  // schedule any ticks.
                  if (tickEvent.scheduled())
                      deschedule(tickEvent);
              } else if (rega_dv_disabled(old_rega))  {
                  // According to the specification, the next tick
                  // happens after 0.5s when the divider chain goes
                  // from reset to active. So, we simply schedule the
                  // tick after 0.5s.
                  assert(!tickEvent.scheduled());
                  schedule(tickEvent, curTick() + SimClock::Int::s / 2);
              }
          } break;
          case RTC_STAT_REGB:
            stat_regB = data;
            if (stat_regB.aie || stat_regB.uie) {
                inform("RTC: Unimplemented interrupt configuration: %s %s\n",
                      stat_regB.aie ? "alarm" : "",
                      stat_regB.uie ? "update" : "");
                panic_unsupported = true;
            }

            if (stat_regB.dm) {
                inform("RTC: The binary interface is not fully implemented.\n");
                panic_unsupported = true;
            }

            if (!stat_regB.format24h) {
                inform("RTC: The 12h time format not supported.\n");
                panic_unsupported = true;
            }

            if (stat_regB.dse) {
                inform("RTC: Automatic daylight saving time not supported.\n");
                panic_unsupported = true;
            }

            if (stat_regB.pie) {
                if (!event.scheduled())
                    event.scheduleIntr();
            } else {
                if (event.scheduled())
                    deschedule(event);
            }
            break;
          case RTC_STAT_REGC:
          case RTC_STAT_REGD:
            panic("RTC status registers C and D are not implemented.\n");
            break;
        }
    }

    if (panic_unsupported)
        panic("Unimplemented RTC configuration!\n");

}

uint8_t
MC146818::readData(uint8_t addr)
{
    if (addr < RTC_STAT_REGA)
        return clock_data[addr];
    else {
        switch (addr) {
          case RTC_STAT_REGA:
            // toggle UIP bit for linux
            stat_regA.uip = !stat_regA.uip;
            return stat_regA;
            break;
          case RTC_STAT_REGB:
            return stat_regB;
            break;
          case RTC_STAT_REGC:
          case RTC_STAT_REGD:
            return 0x00;
            break;
          default:
            panic("Shouldn't be here");
        }
    }
}

void
MC146818::tickClock()
{
    assert(!rega_dv_disabled(stat_regA));

    if (stat_regB.set)
        return;
    time_t calTime = mkutctime(&curTime);
    calTime++;
    setTime(*gmtime(&calTime));
}

void
MC146818::serialize(const string &base, ostream &os)
{
    uint8_t regA_serial(stat_regA);
    uint8_t regB_serial(stat_regB);

    arrayParamOut(os, base + ".clock_data", clock_data, sizeof(clock_data));
    paramOut(os, base + ".stat_regA", (uint8_t)regA_serial);
    paramOut(os, base + ".stat_regB", (uint8_t)regB_serial);

    //
    // save the timer tick and rtc clock tick values to correctly reschedule 
    // them during unserialize
    //
    Tick rtcTimerInterruptTickOffset = event.when() - curTick();
    SERIALIZE_SCALAR(rtcTimerInterruptTickOffset);
    Tick rtcClockTickOffset = tickEvent.when() - curTick();
    SERIALIZE_SCALAR(rtcClockTickOffset);
}

void
MC146818::unserialize(const string &base, Checkpoint *cp,
                      const string &section)
{
    uint8_t tmp8;

    arrayParamIn(cp, section, base + ".clock_data", clock_data,
                 sizeof(clock_data));

    paramIn(cp, section, base + ".stat_regA", tmp8);
    stat_regA = tmp8;
    paramIn(cp, section, base + ".stat_regB", tmp8);
    stat_regB = tmp8;

    //
    // properly schedule the timer and rtc clock events
    //
    Tick rtcTimerInterruptTickOffset;
    UNSERIALIZE_SCALAR(rtcTimerInterruptTickOffset);
    reschedule(event, curTick() + rtcTimerInterruptTickOffset);
    Tick rtcClockTickOffset;
    UNSERIALIZE_SCALAR(rtcClockTickOffset);
    reschedule(tickEvent, curTick() + rtcClockTickOffset);
}

MC146818::RTCEvent::RTCEvent(MC146818 * _parent, Tick i)
    : parent(_parent), interval(i)
{
    DPRINTF(MC146818, "RTC Event Initilizing\n");
    parent->schedule(this, curTick() + interval);
}

void
MC146818::RTCEvent::scheduleIntr()
{
    parent->schedule(this, curTick() + interval);
}

void
MC146818::RTCEvent::process()
{
    DPRINTF(MC146818, "RTC Timer Interrupt\n");
    parent->schedule(this, curTick() + interval);
    parent->handleEvent();
}

const char *
MC146818::RTCEvent::description() const
{
    return "RTC interrupt";
}

void
MC146818::RTCTickEvent::process()
{
    DPRINTF(MC146818, "RTC clock tick\n");
    parent->schedule(this, curTick() + SimClock::Int::s);
    parent->tickClock();
}

const char *
MC146818::RTCTickEvent::description() const
{
    return "RTC clock tick";
}