/* * Copyright (c) 2015 Advanced Micro Devices, Inc. * All rights reserved. * * For use for simulation and test purposes only * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Authors: Anthony Gutierrez */ #ifndef __GPU_STATIC_INST_HH__ #define __GPU_STATIC_INST_HH__ /* * @file gpu_static_inst.hh * * Defines the base class representing static instructions for the GPU. The * instructions are "static" because they contain no dynamic instruction * information. GPUStaticInst corresponds to the StaticInst class for the CPU * models. */ #include #include #include "enums/GPUStaticInstFlags.hh" #include "enums/StorageClassType.hh" #include "gpu-compute/gpu_dyn_inst.hh" #include "gpu-compute/misc.hh" class BaseOperand; class BaseRegOperand; class Wavefront; class GPUStaticInst : public GPUStaticInstFlags { public: GPUStaticInst(const std::string &opcode); void instAddr(int inst_addr) { _instAddr = inst_addr; } int instAddr() const { return _instAddr; } int nextInstAddr() const { return _instAddr + instSize(); } void instNum(int num) { _instNum = num; } int instNum() { return _instNum; } void ipdInstNum(int num) { _ipdInstNum = num; } int ipdInstNum() const { return _ipdInstNum; } virtual void execute(GPUDynInstPtr gpuDynInst) = 0; virtual void generateDisassembly() = 0; const std::string& disassemble(); virtual int getNumOperands() = 0; virtual bool isCondRegister(int operandIndex) = 0; virtual bool isScalarRegister(int operandIndex) = 0; virtual bool isVectorRegister(int operandIndex) = 0; virtual bool isSrcOperand(int operandIndex) = 0; virtual bool isDstOperand(int operandIndex) = 0; virtual int getOperandSize(int operandIndex) = 0; virtual int getRegisterIndex(int operandIndex, GPUDynInstPtr gpuDynInst) = 0; virtual int numDstRegOperands() = 0; virtual int numSrcRegOperands() = 0; virtual bool isValid() const = 0; bool isALU() const { return _flags[ALU]; } bool isBranch() const { return _flags[Branch]; } bool isNop() const { return _flags[Nop]; } bool isReturn() const { return _flags[Return]; } bool isUnconditionalJump() const { return _flags[UnconditionalJump]; } bool isSpecialOp() const { return _flags[SpecialOp]; } bool isWaitcnt() const { return _flags[Waitcnt]; } bool isBarrier() const { return _flags[MemBarrier]; } bool isMemFence() const { return _flags[MemFence]; } bool isMemRef() const { return _flags[MemoryRef]; } bool isFlat() const { return _flags[Flat]; } bool isLoad() const { return _flags[Load]; } bool isStore() const { return _flags[Store]; } bool isAtomic() const { return _flags[AtomicReturn] || _flags[AtomicNoReturn]; } bool isAtomicNoRet() const { return _flags[AtomicNoReturn]; } bool isAtomicRet() const { return _flags[AtomicReturn]; } bool isScalar() const { return _flags[Scalar]; } bool readsSCC() const { return _flags[ReadsSCC]; } bool writesSCC() const { return _flags[WritesSCC]; } bool readsVCC() const { return _flags[ReadsVCC]; } bool writesVCC() const { return _flags[WritesVCC]; } bool isAtomicAnd() const { return _flags[AtomicAnd]; } bool isAtomicOr() const { return _flags[AtomicOr]; } bool isAtomicXor() const { return _flags[AtomicXor]; } bool isAtomicCAS() const { return _flags[AtomicCAS]; } bool isAtomicExch() const { return _flags[AtomicExch]; } bool isAtomicAdd() const { return _flags[AtomicAdd]; } bool isAtomicSub() const { return _flags[AtomicSub]; } bool isAtomicInc() const { return _flags[AtomicInc]; } bool isAtomicDec() const { return _flags[AtomicDec]; } bool isAtomicMax() const { return _flags[AtomicMax]; } bool isAtomicMin() const { return _flags[AtomicMin]; } bool isArgLoad() const { return (_flags[KernArgSegment] || _flags[ArgSegment]) && _flags[Load]; } bool isGlobalMem() const { return _flags[MemoryRef] && (_flags[GlobalSegment] || _flags[PrivateSegment] || _flags[ReadOnlySegment] || _flags[SpillSegment]); } bool isLocalMem() const { return _flags[MemoryRef] && _flags[GroupSegment]; } bool isArgSeg() const { return _flags[ArgSegment]; } bool isGlobalSeg() const { return _flags[GlobalSegment]; } bool isGroupSeg() const { return _flags[GroupSegment]; } bool isKernArgSeg() const { return _flags[KernArgSegment]; } bool isPrivateSeg() const { return _flags[PrivateSegment]; } bool isReadOnlySeg() const { return _flags[ReadOnlySegment]; } bool isSpillSeg() const { return _flags[SpillSegment]; } bool isWorkitemScope() const { return _flags[WorkitemScope]; } bool isWavefrontScope() const { return _flags[WavefrontScope]; } bool isWorkgroupScope() const { return _flags[WorkgroupScope]; } bool isDeviceScope() const { return _flags[DeviceScope]; } bool isSystemScope() const { return _flags[SystemScope]; } bool isNoScope() const { return _flags[NoScope]; } bool isRelaxedOrder() const { return _flags[RelaxedOrder]; } bool isAcquire() const { return _flags[Acquire]; } bool isRelease() const { return _flags[Release]; } bool isAcquireRelease() const { return _flags[AcquireRelease]; } bool isNoOrder() const { return _flags[NoOrder]; } /** * Coherence domain of a memory instruction. Only valid for * machine ISA. The coherence domain specifies where it is * possible to perform memory synchronization, e.g., acquire * or release, from the shader kernel. * * isGloballyCoherent(): returns true if kernel is sharing memory * with other work-items on the same device (GPU) * * isSystemCoherent(): returns true if kernel is sharing memory * with other work-items on a different device (GPU) or the host (CPU) */ bool isGloballyCoherent() const { return _flags[GloballyCoherent]; } bool isSystemCoherent() const { return _flags[SystemCoherent]; } virtual int instSize() const = 0; // only used for memory instructions virtual void initiateAcc(GPUDynInstPtr gpuDynInst) { fatal("calling initiateAcc() on a non-memory instruction.\n"); } // only used for memory instructions virtual void completeAcc(GPUDynInstPtr gpuDynInst) { fatal("calling completeAcc() on a non-memory instruction.\n"); } virtual uint32_t getTargetPc() { return 0; } static uint64_t dynamic_id_count; // For flat memory accesses Enums::StorageClassType executed_as; void setFlag(Flags flag) { _flags[flag] = true; } virtual void execLdAcq(GPUDynInstPtr gpuDynInst) { fatal("calling execLdAcq() on a non-load instruction.\n"); } virtual void execSt(GPUDynInstPtr gpuDynInst) { fatal("calling execLdAcq() on a non-load instruction.\n"); } virtual void execAtomic(GPUDynInstPtr gpuDynInst) { fatal("calling execAtomic() on a non-atomic instruction.\n"); } virtual void execAtomicAcq(GPUDynInstPtr gpuDynInst) { fatal("calling execAtomicAcq() on a non-atomic instruction.\n"); } protected: const std::string opcode; std::string disassembly; int _instNum; int _instAddr; /** * Identifier of the immediate post-dominator instruction. */ int _ipdInstNum; std::bitset _flags; }; class KernelLaunchStaticInst : public GPUStaticInst { public: KernelLaunchStaticInst() : GPUStaticInst("kernel_launch") { setFlag(Nop); setFlag(Scalar); setFlag(Acquire); setFlag(SystemScope); setFlag(GlobalSegment); } void execute(GPUDynInstPtr gpuDynInst) override { fatal("kernel launch instruction should not be executed\n"); } void generateDisassembly() override { disassembly = opcode; } int getNumOperands() override { return 0; } bool isCondRegister(int operandIndex) override { return false; } bool isScalarRegister(int operandIndex) override { return false; } bool isVectorRegister(int operandIndex) override { return false; } bool isSrcOperand(int operandIndex) override { return false; } bool isDstOperand(int operandIndex) override { return false; } int getOperandSize(int operandIndex) override { return 0; } int getRegisterIndex(int operandIndex, GPUDynInstPtr gpuDynInst) override { return 0; } int numDstRegOperands() override { return 0; } int numSrcRegOperands() override { return 0; } bool isValid() const override { return true; } int instSize() const override { return 0; } }; #endif // __GPU_STATIC_INST_HH__