/* * Copyright (c) 2017 Jason Lowe-Power * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Jason Lowe-Power */ #include "learning_gem5/part2/simple_cache.hh" #include "base/random.hh" #include "debug/SimpleCache.hh" #include "sim/system.hh" SimpleCache::SimpleCache(SimpleCacheParams *params) : MemObject(params), latency(params->latency), blockSize(params->system->cacheLineSize()), capacity(params->size / blockSize), memPort(params->name + ".mem_side", this), blocked(false), originalPacket(nullptr), waitingPortId(-1) { // Since the CPU side ports are a vector of ports, create an instance of // the CPUSidePort for each connection. This member of params is // automatically created depending on the name of the vector port and // holds the number of connections to this port name for (int i = 0; i < params->port_cpu_side_connection_count; ++i) { cpuPorts.emplace_back(name() + csprintf(".cpu_side[%d]", i), i, this); } } BaseMasterPort& SimpleCache::getMasterPort(const std::string& if_name, PortID idx) { panic_if(idx != InvalidPortID, "This object doesn't support vector ports"); // This is the name from the Python SimObject declaration in SimpleCache.py if (if_name == "mem_side") { return memPort; } else { // pass it along to our super class return MemObject::getMasterPort(if_name, idx); } } BaseSlavePort& SimpleCache::getSlavePort(const std::string& if_name, PortID idx) { // This is the name from the Python SimObject declaration (SimpleMemobj.py) if (if_name == "cpu_side" && idx < cpuPorts.size()) { // We should have already created all of the ports in the constructor return cpuPorts[idx]; } else { // pass it along to our super class return MemObject::getSlavePort(if_name, idx); } } void SimpleCache::CPUSidePort::sendPacket(PacketPtr pkt) { // Note: This flow control is very simple since the cache is blocking. panic_if(blockedPacket != nullptr, "Should never try to send if blocked!"); // If we can't send the packet across the port, store it for later. DPRINTF(SimpleCache, "Sending %s to CPU\n", pkt->print()); if (!sendTimingResp(pkt)) { DPRINTF(SimpleCache, "failed!\n"); blockedPacket = pkt; } } AddrRangeList SimpleCache::CPUSidePort::getAddrRanges() const { return owner->getAddrRanges(); } void SimpleCache::CPUSidePort::trySendRetry() { if (needRetry && blockedPacket == nullptr) { // Only send a retry if the port is now completely free needRetry = false; DPRINTF(SimpleCache, "Sending retry req.\n"); sendRetryReq(); } } void SimpleCache::CPUSidePort::recvFunctional(PacketPtr pkt) { // Just forward to the cache. return owner->handleFunctional(pkt); } bool SimpleCache::CPUSidePort::recvTimingReq(PacketPtr pkt) { DPRINTF(SimpleCache, "Got request %s\n", pkt->print()); if (blockedPacket || needRetry) { // The cache may not be able to send a reply if this is blocked DPRINTF(SimpleCache, "Request blocked\n"); needRetry = true; return false; } // Just forward to the cache. if (!owner->handleRequest(pkt, id)) { DPRINTF(SimpleCache, "Request failed\n"); // stalling needRetry = true; return false; } else { DPRINTF(SimpleCache, "Request succeeded\n"); return true; } } void SimpleCache::CPUSidePort::recvRespRetry() { // We should have a blocked packet if this function is called. assert(blockedPacket != nullptr); // Grab the blocked packet. PacketPtr pkt = blockedPacket; blockedPacket = nullptr; DPRINTF(SimpleCache, "Retrying response pkt %s\n", pkt->print()); // Try to resend it. It's possible that it fails again. sendPacket(pkt); // We may now be able to accept new packets trySendRetry(); } void SimpleCache::MemSidePort::sendPacket(PacketPtr pkt) { // Note: This flow control is very simple since the cache is blocking. panic_if(blockedPacket != nullptr, "Should never try to send if blocked!"); // If we can't send the packet across the port, store it for later. if (!sendTimingReq(pkt)) { blockedPacket = pkt; } } bool SimpleCache::MemSidePort::recvTimingResp(PacketPtr pkt) { // Just forward to the cache. return owner->handleResponse(pkt); } void SimpleCache::MemSidePort::recvReqRetry() { // We should have a blocked packet if this function is called. assert(blockedPacket != nullptr); // Grab the blocked packet. PacketPtr pkt = blockedPacket; blockedPacket = nullptr; // Try to resend it. It's possible that it fails again. sendPacket(pkt); } void SimpleCache::MemSidePort::recvRangeChange() { owner->sendRangeChange(); } bool SimpleCache::handleRequest(PacketPtr pkt, int port_id) { if (blocked) { // There is currently an outstanding request so we can't respond. Stall return false; } DPRINTF(SimpleCache, "Got request for addr %#x\n", pkt->getAddr()); // This cache is now blocked waiting for the response to this packet. blocked = true; // Store the port for when we get the response assert(waitingPortId == -1); waitingPortId = port_id; // Schedule an event after cache access latency to actually access schedule(new EventFunctionWrapper([this, pkt]{ accessTiming(pkt); }, name() + ".accessEvent", true), clockEdge(latency)); return true; } bool SimpleCache::handleResponse(PacketPtr pkt) { assert(blocked); DPRINTF(SimpleCache, "Got response for addr %#x\n", pkt->getAddr()); // For now assume that inserts are off of the critical path and don't count // for any added latency. insert(pkt); missLatency.sample(curTick() - missTime); // If we had to upgrade the request packet to a full cache line, now we // can use that packet to construct the response. if (originalPacket != nullptr) { DPRINTF(SimpleCache, "Copying data from new packet to old\n"); // We had to upgrade a previous packet. We can functionally deal with // the cache access now. It better be a hit. bool hit M5_VAR_USED = accessFunctional(originalPacket); panic_if(!hit, "Should always hit after inserting"); originalPacket->makeResponse(); delete pkt; // We may need to delay this, I'm not sure. pkt = originalPacket; originalPacket = nullptr; } // else, pkt contains the data it needs sendResponse(pkt); return true; } void SimpleCache::sendResponse(PacketPtr pkt) { assert(blocked); DPRINTF(SimpleCache, "Sending resp for addr %#x\n", pkt->getAddr()); int port = waitingPortId; // The packet is now done. We're about to put it in the port, no need for // this object to continue to stall. // We need to free the resource before sending the packet in case the CPU // tries to send another request immediately (e.g., in the same callchain). blocked = false; waitingPortId = -1; // Simply forward to the memory port cpuPorts[port].sendPacket(pkt); // For each of the cpu ports, if it needs to send a retry, it should do it // now since this memory object may be unblocked now. for (auto& port : cpuPorts) { port.trySendRetry(); } } void SimpleCache::handleFunctional(PacketPtr pkt) { if (accessFunctional(pkt)) { pkt->makeResponse(); } else { memPort.sendFunctional(pkt); } } void SimpleCache::accessTiming(PacketPtr pkt) { bool hit = accessFunctional(pkt); DPRINTF(SimpleCache, "%s for packet: %s\n", hit ? "Hit" : "Miss", pkt->print()); if (hit) { // Respond to the CPU side hits++; // update stats DDUMP(SimpleCache, pkt->getConstPtr(), pkt->getSize()); pkt->makeResponse(); sendResponse(pkt); } else { misses++; // update stats missTime = curTick(); // Forward to the memory side. // We can't directly forward the packet unless it is exactly the size // of the cache line, and aligned. Check for that here. Addr addr = pkt->getAddr(); Addr block_addr = pkt->getBlockAddr(blockSize); unsigned size = pkt->getSize(); if (addr == block_addr && size == blockSize) { // Aligned and block size. We can just forward. DPRINTF(SimpleCache, "forwarding packet\n"); memPort.sendPacket(pkt); } else { DPRINTF(SimpleCache, "Upgrading packet to block size\n"); panic_if(addr - block_addr + size > blockSize, "Cannot handle accesses that span multiple cache lines"); // Unaligned access to one cache block assert(pkt->needsResponse()); MemCmd cmd; if (pkt->isWrite() || pkt->isRead()) { // Read the data from memory to write into the block. // We'll write the data in the cache (i.e., a writeback cache) cmd = MemCmd::ReadReq; } else { panic("Unknown packet type in upgrade size"); } // Create a new packet that is blockSize PacketPtr new_pkt = new Packet(pkt->req, cmd, blockSize); new_pkt->allocate(); // Should now be block aligned assert(new_pkt->getAddr() == new_pkt->getBlockAddr(blockSize)); // Save the old packet originalPacket = pkt; DPRINTF(SimpleCache, "forwarding packet\n"); memPort.sendPacket(new_pkt); } } } bool SimpleCache::accessFunctional(PacketPtr pkt) { Addr block_addr = pkt->getBlockAddr(blockSize); auto it = cacheStore.find(block_addr); if (it != cacheStore.end()) { if (pkt->isWrite()) { // Write the data into the block in the cache pkt->writeDataToBlock(it->second, blockSize); } else if (pkt->isRead()) { // Read the data out of the cache block into the packet pkt->setDataFromBlock(it->second, blockSize); } else { panic("Unknown packet type!"); } return true; } return false; } void SimpleCache::insert(PacketPtr pkt) { // The packet should be aligned. assert(pkt->getAddr() == pkt->getBlockAddr(blockSize)); // The address should not be in the cache assert(cacheStore.find(pkt->getAddr()) == cacheStore.end()); // The pkt should be a response assert(pkt->isResponse()); if (cacheStore.size() >= capacity) { // Select random thing to evict. This is a little convoluted since we // are using a std::unordered_map. See http://bit.ly/2hrnLP2 int bucket, bucket_size; do { bucket = random_mt.random(0, (int)cacheStore.bucket_count() - 1); } while ( (bucket_size = cacheStore.bucket_size(bucket)) == 0 ); auto block = std::next(cacheStore.begin(bucket), random_mt.random(0, bucket_size - 1)); DPRINTF(SimpleCache, "Removing addr %#x\n", block->first); // Write back the data. // Create a new request-packet pair RequestPtr req = new Request(block->first, blockSize, 0, 0); PacketPtr new_pkt = new Packet(req, MemCmd::WritebackDirty, blockSize); new_pkt->dataDynamic(block->second); // This will be deleted later DPRINTF(SimpleCache, "Writing packet back %s\n", pkt->print()); // Send the write to memory memPort.sendPacket(new_pkt); // Delete this entry cacheStore.erase(block->first); } DPRINTF(SimpleCache, "Inserting %s\n", pkt->print()); DDUMP(SimpleCache, pkt->getConstPtr(), blockSize); // Allocate space for the cache block data uint8_t *data = new uint8_t[blockSize]; // Insert the data and address into the cache store cacheStore[pkt->getAddr()] = data; // Write the data into the cache pkt->writeDataToBlock(data, blockSize); } AddrRangeList SimpleCache::getAddrRanges() const { DPRINTF(SimpleCache, "Sending new ranges\n"); // Just use the same ranges as whatever is on the memory side. return memPort.getAddrRanges(); } void SimpleCache::sendRangeChange() const { for (auto& port : cpuPorts) { port.sendRangeChange(); } } void SimpleCache::regStats() { // If you don't do this you get errors about uninitialized stats. MemObject::regStats(); hits.name(name() + ".hits") .desc("Number of hits") ; misses.name(name() + ".misses") .desc("Number of misses") ; missLatency.name(name() + ".missLatency") .desc("Ticks for misses to the cache") .init(16) // number of buckets ; hitRatio.name(name() + ".hitRatio") .desc("The ratio of hits to the total accesses to the cache") ; hitRatio = hits / (hits + misses); } SimpleCache* SimpleCacheParams::create() { return new SimpleCache(this); }