/* * Copyright (c) 2010-2012,2017-2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ron Dreslinski * Ali Saidi * Andreas Hansson */ #include "mem/abstract_mem.hh" #include #include "arch/locked_mem.hh" #include "cpu/base.hh" #include "cpu/thread_context.hh" #include "debug/LLSC.hh" #include "debug/MemoryAccess.hh" #include "mem/packet_access.hh" #include "sim/system.hh" using namespace std; AbstractMemory::AbstractMemory(const Params *p) : ClockedObject(p), range(params()->range), pmemAddr(NULL), backdoor(params()->range, nullptr, (MemBackdoor::Flags)(MemBackdoor::Readable | MemBackdoor::Writeable)), confTableReported(p->conf_table_reported), inAddrMap(p->in_addr_map), kvmMap(p->kvm_map), _system(NULL) { } void AbstractMemory::init() { assert(system()); if (size() % _system->getPageBytes() != 0) panic("Memory Size not divisible by page size\n"); } void AbstractMemory::setBackingStore(uint8_t* pmem_addr) { // If there was an existing backdoor, let everybody know it's going away. if (backdoor.ptr()) backdoor.invalidate(); // The back door can't handle interleaved memory. backdoor.ptr(range.interleaved() ? nullptr : pmem_addr); pmemAddr = pmem_addr; } void AbstractMemory::regStats() { ClockedObject::regStats(); using namespace Stats; assert(system()); bytesRead .init(system()->maxMasters()) .name(name() + ".bytes_read") .desc("Number of bytes read from this memory") .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { bytesRead.subname(i, system()->getMasterName(i)); } bytesInstRead .init(system()->maxMasters()) .name(name() + ".bytes_inst_read") .desc("Number of instructions bytes read from this memory") .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { bytesInstRead.subname(i, system()->getMasterName(i)); } bytesWritten .init(system()->maxMasters()) .name(name() + ".bytes_written") .desc("Number of bytes written to this memory") .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { bytesWritten.subname(i, system()->getMasterName(i)); } numReads .init(system()->maxMasters()) .name(name() + ".num_reads") .desc("Number of read requests responded to by this memory") .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { numReads.subname(i, system()->getMasterName(i)); } numWrites .init(system()->maxMasters()) .name(name() + ".num_writes") .desc("Number of write requests responded to by this memory") .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { numWrites.subname(i, system()->getMasterName(i)); } numOther .init(system()->maxMasters()) .name(name() + ".num_other") .desc("Number of other requests responded to by this memory") .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { numOther.subname(i, system()->getMasterName(i)); } bwRead .name(name() + ".bw_read") .desc("Total read bandwidth from this memory (bytes/s)") .precision(0) .prereq(bytesRead) .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { bwRead.subname(i, system()->getMasterName(i)); } bwInstRead .name(name() + ".bw_inst_read") .desc("Instruction read bandwidth from this memory (bytes/s)") .precision(0) .prereq(bytesInstRead) .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { bwInstRead.subname(i, system()->getMasterName(i)); } bwWrite .name(name() + ".bw_write") .desc("Write bandwidth from this memory (bytes/s)") .precision(0) .prereq(bytesWritten) .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { bwWrite.subname(i, system()->getMasterName(i)); } bwTotal .name(name() + ".bw_total") .desc("Total bandwidth to/from this memory (bytes/s)") .precision(0) .prereq(bwTotal) .flags(total | nozero | nonan) ; for (int i = 0; i < system()->maxMasters(); i++) { bwTotal.subname(i, system()->getMasterName(i)); } bwRead = bytesRead / simSeconds; bwInstRead = bytesInstRead / simSeconds; bwWrite = bytesWritten / simSeconds; bwTotal = (bytesRead + bytesWritten) / simSeconds; } AddrRange AbstractMemory::getAddrRange() const { return range; } // Add load-locked to tracking list. Should only be called if the // operation is a load and the LLSC flag is set. void AbstractMemory::trackLoadLocked(PacketPtr pkt) { const RequestPtr &req = pkt->req; Addr paddr = LockedAddr::mask(req->getPaddr()); // first we check if we already have a locked addr for this // xc. Since each xc only gets one, we just update the // existing record with the new address. list::iterator i; for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) { if (i->matchesContext(req)) { DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n", req->contextId(), paddr); i->addr = paddr; return; } } // no record for this xc: need to allocate a new one DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n", req->contextId(), paddr); lockedAddrList.push_front(LockedAddr(req)); } // Called on *writes* only... both regular stores and // store-conditional operations. Check for conventional stores which // conflict with locked addresses, and for success/failure of store // conditionals. bool AbstractMemory::checkLockedAddrList(PacketPtr pkt) { const RequestPtr &req = pkt->req; Addr paddr = LockedAddr::mask(req->getPaddr()); bool isLLSC = pkt->isLLSC(); // Initialize return value. Non-conditional stores always // succeed. Assume conditional stores will fail until proven // otherwise. bool allowStore = !isLLSC; // Iterate over list. Note that there could be multiple matching records, // as more than one context could have done a load locked to this location. // Only remove records when we succeed in finding a record for (xc, addr); // then, remove all records with this address. Failed store-conditionals do // not blow unrelated reservations. list::iterator i = lockedAddrList.begin(); if (isLLSC) { while (i != lockedAddrList.end()) { if (i->addr == paddr && i->matchesContext(req)) { // it's a store conditional, and as far as the memory system can // tell, the requesting context's lock is still valid. DPRINTF(LLSC, "StCond success: context %d addr %#x\n", req->contextId(), paddr); allowStore = true; break; } // If we didn't find a match, keep searching! Someone else may well // have a reservation on this line here but we may find ours in just // a little while. i++; } req->setExtraData(allowStore ? 1 : 0); } // LLSCs that succeeded AND non-LLSC stores both fall into here: if (allowStore) { // We write address paddr. However, there may be several entries with a // reservation on this address (for other contextIds) and they must all // be removed. i = lockedAddrList.begin(); while (i != lockedAddrList.end()) { if (i->addr == paddr) { DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n", i->contextId, paddr); ContextID owner_cid = i->contextId; ContextID requester_cid = pkt->req->contextId(); if (owner_cid != requester_cid) { ThreadContext* ctx = system()->getThreadContext(owner_cid); TheISA::globalClearExclusive(ctx); } i = lockedAddrList.erase(i); } else { i++; } } } return allowStore; } #if TRACING_ON static inline void tracePacket(System *sys, const char *label, PacketPtr pkt) { int size = pkt->getSize(); #if THE_ISA != NULL_ISA if (size == 1 || size == 2 || size == 4 || size == 8) { DPRINTF(MemoryAccess,"%s from %s of size %i on address %#x data " "%#x %c\n", label, sys->getMasterName(pkt->req->masterId()), size, pkt->getAddr(), pkt->getUintX(TheISA::GuestByteOrder), pkt->req->isUncacheable() ? 'U' : 'C'); return; } #endif DPRINTF(MemoryAccess, "%s from %s of size %i on address %#x %c\n", label, sys->getMasterName(pkt->req->masterId()), size, pkt->getAddr(), pkt->req->isUncacheable() ? 'U' : 'C'); DDUMP(MemoryAccess, pkt->getConstPtr(), pkt->getSize()); } # define TRACE_PACKET(A) tracePacket(system(), A, pkt) #else # define TRACE_PACKET(A) #endif void AbstractMemory::access(PacketPtr pkt) { if (pkt->cacheResponding()) { DPRINTF(MemoryAccess, "Cache responding to %#llx: not responding\n", pkt->getAddr()); return; } if (pkt->cmd == MemCmd::CleanEvict || pkt->cmd == MemCmd::WritebackClean) { DPRINTF(MemoryAccess, "CleanEvict on 0x%x: not responding\n", pkt->getAddr()); return; } assert(pkt->getAddrRange().isSubset(range)); uint8_t *hostAddr = pmemAddr + pkt->getAddr() - range.start(); if (pkt->cmd == MemCmd::SwapReq) { if (pkt->isAtomicOp()) { if (pmemAddr) { pkt->setData(hostAddr); (*(pkt->getAtomicOp()))(hostAddr); } } else { std::vector overwrite_val(pkt->getSize()); uint64_t condition_val64; uint32_t condition_val32; panic_if(!pmemAddr, "Swap only works if there is real memory " \ "(i.e. null=False)"); bool overwrite_mem = true; // keep a copy of our possible write value, and copy what is at the // memory address into the packet pkt->writeData(&overwrite_val[0]); pkt->setData(hostAddr); if (pkt->req->isCondSwap()) { if (pkt->getSize() == sizeof(uint64_t)) { condition_val64 = pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val64, hostAddr, sizeof(uint64_t)); } else if (pkt->getSize() == sizeof(uint32_t)) { condition_val32 = (uint32_t)pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val32, hostAddr, sizeof(uint32_t)); } else panic("Invalid size for conditional read/write\n"); } if (overwrite_mem) std::memcpy(hostAddr, &overwrite_val[0], pkt->getSize()); assert(!pkt->req->isInstFetch()); TRACE_PACKET("Read/Write"); numOther[pkt->req->masterId()]++; } } else if (pkt->isRead()) { assert(!pkt->isWrite()); if (pkt->isLLSC()) { assert(!pkt->fromCache()); // if the packet is not coming from a cache then we have // to do the LL/SC tracking here trackLoadLocked(pkt); } if (pmemAddr) { pkt->setData(hostAddr); } TRACE_PACKET(pkt->req->isInstFetch() ? "IFetch" : "Read"); numReads[pkt->req->masterId()]++; bytesRead[pkt->req->masterId()] += pkt->getSize(); if (pkt->req->isInstFetch()) bytesInstRead[pkt->req->masterId()] += pkt->getSize(); } else if (pkt->isInvalidate() || pkt->isClean()) { assert(!pkt->isWrite()); // in a fastmem system invalidating and/or cleaning packets // can be seen due to cache maintenance requests // no need to do anything } else if (pkt->isWrite()) { if (writeOK(pkt)) { if (pmemAddr) { pkt->writeData(hostAddr); DPRINTF(MemoryAccess, "%s wrote %i bytes to address %x\n", __func__, pkt->getSize(), pkt->getAddr()); } assert(!pkt->req->isInstFetch()); TRACE_PACKET("Write"); numWrites[pkt->req->masterId()]++; bytesWritten[pkt->req->masterId()] += pkt->getSize(); } } else { panic("Unexpected packet %s", pkt->print()); } if (pkt->needsResponse()) { pkt->makeResponse(); } } void AbstractMemory::functionalAccess(PacketPtr pkt) { assert(pkt->getAddrRange().isSubset(range)); uint8_t *hostAddr = pmemAddr + pkt->getAddr() - range.start(); if (pkt->isRead()) { if (pmemAddr) { pkt->setData(hostAddr); } TRACE_PACKET("Read"); pkt->makeResponse(); } else if (pkt->isWrite()) { if (pmemAddr) { pkt->writeData(hostAddr); } TRACE_PACKET("Write"); pkt->makeResponse(); } else if (pkt->isPrint()) { Packet::PrintReqState *prs = dynamic_cast(pkt->senderState); assert(prs); // Need to call printLabels() explicitly since we're not going // through printObj(). prs->printLabels(); // Right now we just print the single byte at the specified address. ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr); } else { panic("AbstractMemory: unimplemented functional command %s", pkt->cmdString()); } }