/* * Copyright (c) 2011-2013, 2015 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi * Steve Reinhardt * Andreas Hansson */ /** * @file * Implementation of a memory-mapped bridge that connects a master * and a slave through a request and response queue. */ #include "mem/bridge.hh" #include "base/trace.hh" #include "debug/Bridge.hh" #include "params/Bridge.hh" Bridge::BridgeSlavePort::BridgeSlavePort(const std::string& _name, Bridge& _bridge, BridgeMasterPort& _masterPort, Cycles _delay, int _resp_limit, std::vector _ranges) : SlavePort(_name, &_bridge), bridge(_bridge), masterPort(_masterPort), delay(_delay), ranges(_ranges.begin(), _ranges.end()), outstandingResponses(0), retryReq(false), respQueueLimit(_resp_limit), sendEvent([this]{ trySendTiming(); }, _name) { } Bridge::BridgeMasterPort::BridgeMasterPort(const std::string& _name, Bridge& _bridge, BridgeSlavePort& _slavePort, Cycles _delay, int _req_limit) : MasterPort(_name, &_bridge), bridge(_bridge), slavePort(_slavePort), delay(_delay), reqQueueLimit(_req_limit), sendEvent([this]{ trySendTiming(); }, _name) { } Bridge::Bridge(Params *p) : MemObject(p), slavePort(p->name + ".slave", *this, masterPort, ticksToCycles(p->delay), p->resp_size, p->ranges), masterPort(p->name + ".master", *this, slavePort, ticksToCycles(p->delay), p->req_size) { } BaseMasterPort& Bridge::getMasterPort(const std::string &if_name, PortID idx) { if (if_name == "master") return masterPort; else // pass it along to our super class return MemObject::getMasterPort(if_name, idx); } BaseSlavePort& Bridge::getSlavePort(const std::string &if_name, PortID idx) { if (if_name == "slave") return slavePort; else // pass it along to our super class return MemObject::getSlavePort(if_name, idx); } void Bridge::init() { // make sure both sides are connected and have the same block size if (!slavePort.isConnected() || !masterPort.isConnected()) fatal("Both ports of a bridge must be connected.\n"); // notify the master side of our address ranges slavePort.sendRangeChange(); } bool Bridge::BridgeSlavePort::respQueueFull() const { return outstandingResponses == respQueueLimit; } bool Bridge::BridgeMasterPort::reqQueueFull() const { return transmitList.size() == reqQueueLimit; } bool Bridge::BridgeMasterPort::recvTimingResp(PacketPtr pkt) { // all checks are done when the request is accepted on the slave // side, so we are guaranteed to have space for the response DPRINTF(Bridge, "recvTimingResp: %s addr 0x%x\n", pkt->cmdString(), pkt->getAddr()); DPRINTF(Bridge, "Request queue size: %d\n", transmitList.size()); // technically the packet only reaches us after the header delay, // and typically we also need to deserialise any payload (unless // the two sides of the bridge are synchronous) Tick receive_delay = pkt->headerDelay + pkt->payloadDelay; pkt->headerDelay = pkt->payloadDelay = 0; slavePort.schedTimingResp(pkt, bridge.clockEdge(delay) + receive_delay); return true; } bool Bridge::BridgeSlavePort::recvTimingReq(PacketPtr pkt) { DPRINTF(Bridge, "recvTimingReq: %s addr 0x%x\n", pkt->cmdString(), pkt->getAddr()); panic_if(pkt->cacheResponding(), "Should not see packets where cache " "is responding"); // we should not get a new request after committing to retry the // current one, but unfortunately the CPU violates this rule, so // simply ignore it for now if (retryReq) return false; DPRINTF(Bridge, "Response queue size: %d outresp: %d\n", transmitList.size(), outstandingResponses); // if the request queue is full then there is no hope if (masterPort.reqQueueFull()) { DPRINTF(Bridge, "Request queue full\n"); retryReq = true; } else { // look at the response queue if we expect to see a response bool expects_response = pkt->needsResponse(); if (expects_response) { if (respQueueFull()) { DPRINTF(Bridge, "Response queue full\n"); retryReq = true; } else { // ok to send the request with space for the response DPRINTF(Bridge, "Reserving space for response\n"); assert(outstandingResponses != respQueueLimit); ++outstandingResponses; // no need to set retryReq to false as this is already the // case } } if (!retryReq) { // technically the packet only reaches us after the header // delay, and typically we also need to deserialise any // payload (unless the two sides of the bridge are // synchronous) Tick receive_delay = pkt->headerDelay + pkt->payloadDelay; pkt->headerDelay = pkt->payloadDelay = 0; masterPort.schedTimingReq(pkt, bridge.clockEdge(delay) + receive_delay); } } // remember that we are now stalling a packet and that we have to // tell the sending master to retry once space becomes available, // we make no distinction whether the stalling is due to the // request queue or response queue being full return !retryReq; } void Bridge::BridgeSlavePort::retryStalledReq() { if (retryReq) { DPRINTF(Bridge, "Request waiting for retry, now retrying\n"); retryReq = false; sendRetryReq(); } } void Bridge::BridgeMasterPort::schedTimingReq(PacketPtr pkt, Tick when) { // If we're about to put this packet at the head of the queue, we // need to schedule an event to do the transmit. Otherwise there // should already be an event scheduled for sending the head // packet. if (transmitList.empty()) { bridge.schedule(sendEvent, when); } assert(transmitList.size() != reqQueueLimit); transmitList.emplace_back(pkt, when); } void Bridge::BridgeSlavePort::schedTimingResp(PacketPtr pkt, Tick when) { // If we're about to put this packet at the head of the queue, we // need to schedule an event to do the transmit. Otherwise there // should already be an event scheduled for sending the head // packet. if (transmitList.empty()) { bridge.schedule(sendEvent, when); } transmitList.emplace_back(pkt, when); } void Bridge::BridgeMasterPort::trySendTiming() { assert(!transmitList.empty()); DeferredPacket req = transmitList.front(); assert(req.tick <= curTick()); PacketPtr pkt = req.pkt; DPRINTF(Bridge, "trySend request addr 0x%x, queue size %d\n", pkt->getAddr(), transmitList.size()); if (sendTimingReq(pkt)) { // send successful transmitList.pop_front(); DPRINTF(Bridge, "trySend request successful\n"); // If there are more packets to send, schedule event to try again. if (!transmitList.empty()) { DeferredPacket next_req = transmitList.front(); DPRINTF(Bridge, "Scheduling next send\n"); bridge.schedule(sendEvent, std::max(next_req.tick, bridge.clockEdge())); } // if we have stalled a request due to a full request queue, // then send a retry at this point, also note that if the // request we stalled was waiting for the response queue // rather than the request queue we might stall it again slavePort.retryStalledReq(); } // if the send failed, then we try again once we receive a retry, // and therefore there is no need to take any action } void Bridge::BridgeSlavePort::trySendTiming() { assert(!transmitList.empty()); DeferredPacket resp = transmitList.front(); assert(resp.tick <= curTick()); PacketPtr pkt = resp.pkt; DPRINTF(Bridge, "trySend response addr 0x%x, outstanding %d\n", pkt->getAddr(), outstandingResponses); if (sendTimingResp(pkt)) { // send successful transmitList.pop_front(); DPRINTF(Bridge, "trySend response successful\n"); assert(outstandingResponses != 0); --outstandingResponses; // If there are more packets to send, schedule event to try again. if (!transmitList.empty()) { DeferredPacket next_resp = transmitList.front(); DPRINTF(Bridge, "Scheduling next send\n"); bridge.schedule(sendEvent, std::max(next_resp.tick, bridge.clockEdge())); } // if there is space in the request queue and we were stalling // a request, it will definitely be possible to accept it now // since there is guaranteed space in the response queue if (!masterPort.reqQueueFull() && retryReq) { DPRINTF(Bridge, "Request waiting for retry, now retrying\n"); retryReq = false; sendRetryReq(); } } // if the send failed, then we try again once we receive a retry, // and therefore there is no need to take any action } void Bridge::BridgeMasterPort::recvReqRetry() { trySendTiming(); } void Bridge::BridgeSlavePort::recvRespRetry() { trySendTiming(); } Tick Bridge::BridgeSlavePort::recvAtomic(PacketPtr pkt) { panic_if(pkt->cacheResponding(), "Should not see packets where cache " "is responding"); return delay * bridge.clockPeriod() + masterPort.sendAtomic(pkt); } void Bridge::BridgeSlavePort::recvFunctional(PacketPtr pkt) { pkt->pushLabel(name()); // check the response queue for (auto i = transmitList.begin(); i != transmitList.end(); ++i) { if (pkt->trySatisfyFunctional((*i).pkt)) { pkt->makeResponse(); return; } } // also check the master port's request queue if (masterPort.trySatisfyFunctional(pkt)) { return; } pkt->popLabel(); // fall through if pkt still not satisfied masterPort.sendFunctional(pkt); } bool Bridge::BridgeMasterPort::trySatisfyFunctional(PacketPtr pkt) { bool found = false; auto i = transmitList.begin(); while (i != transmitList.end() && !found) { if (pkt->trySatisfyFunctional((*i).pkt)) { pkt->makeResponse(); found = true; } ++i; } return found; } AddrRangeList Bridge::BridgeSlavePort::getAddrRanges() const { return ranges; } Bridge * BridgeParams::create() { return new Bridge(this); }