/* * Copyright (c) 2003-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Erik Hallnor */ /** * @file * Definition of BaseCache functions. */ #include "mem/cache/base_cache.hh" #include "cpu/smt.hh" #include "cpu/base.hh" using namespace std; BaseCache::CachePort::CachePort(const std::string &_name, BaseCache *_cache, bool _isCpuSide) : Port(_name), cache(_cache), isCpuSide(_isCpuSide) { blocked = false; //Start ports at null if more than one is created we should panic //cpuSidePort = NULL; //memSidePort = NULL; } void BaseCache::CachePort::recvStatusChange(Port::Status status) { cache->recvStatusChange(status, isCpuSide); } void BaseCache::CachePort::getDeviceAddressRanges(AddrRangeList &resp, AddrRangeList &snoop) { cache->getAddressRanges(resp, snoop, isCpuSide); } int BaseCache::CachePort::deviceBlockSize() { return cache->getBlockSize(); } bool BaseCache::CachePort::recvTiming(Packet *pkt) { if (pkt->isRequest() && blocked) { DPRINTF(Cache,"Scheduling a retry while blocked\n"); mustSendRetry = true; return false; } return cache->doTimingAccess(pkt, this, isCpuSide); } Tick BaseCache::CachePort::recvAtomic(Packet *pkt) { return cache->doAtomicAccess(pkt, isCpuSide); } void BaseCache::CachePort::recvFunctional(Packet *pkt) { cache->doFunctionalAccess(pkt, isCpuSide); } void BaseCache::CachePort::recvRetry() { Packet *pkt; if (!drainList.empty()) { //We have some responses to drain first bool result = true; while (result && !drainList.empty()) { result = sendTiming(drainList.front()); if (result) drainList.pop_front(); } } if (!isCpuSide) { pkt = cache->getPacket(); bool success = sendTiming(pkt); DPRINTF(Cache, "Address %x was %s in sending the timing request\n", pkt->getAddr(), success ? "succesful" : "unsuccesful"); cache->sendResult(pkt, success); if (success && cache->doMasterRequest()) { //Still more to issue, rerequest in 1 cycle pkt = NULL; BaseCache::CacheEvent * reqCpu = new BaseCache::CacheEvent(this); reqCpu->schedule(curTick + 1); } } else { pkt = cache->getCoherencePacket(); bool success = sendTiming(pkt); if (success && cache->doSlaveRequest()) { //Still more to issue, rerequest in 1 cycle pkt = NULL; BaseCache::CacheEvent * reqCpu = new BaseCache::CacheEvent(this); reqCpu->schedule(curTick + 1); } } return; } void BaseCache::CachePort::setBlocked() { assert(!blocked); DPRINTF(Cache, "Cache Blocking\n"); blocked = true; //Clear the retry flag mustSendRetry = false; } void BaseCache::CachePort::clearBlocked() { assert(blocked); DPRINTF(Cache, "Cache Unblocking\n"); blocked = false; if (mustSendRetry) { DPRINTF(Cache, "Cache Sending Retry\n"); mustSendRetry = false; sendRetry(); } } BaseCache::CacheEvent::CacheEvent(CachePort *_cachePort) : Event(&mainEventQueue, CPU_Tick_Pri), cachePort(_cachePort) { this->setFlags(AutoDelete); pkt = NULL; } BaseCache::CacheEvent::CacheEvent(CachePort *_cachePort, Packet *_pkt) : Event(&mainEventQueue, CPU_Tick_Pri), cachePort(_cachePort), pkt(_pkt) { this->setFlags(AutoDelete); } void BaseCache::CacheEvent::process() { if (!pkt) { if (!cachePort->isCpuSide) { //MSHR pkt = cachePort->cache->getPacket(); bool success = cachePort->sendTiming(pkt); DPRINTF(Cache, "Address %x was %s in sending the timing request\n", pkt->getAddr(), success ? "succesful" : "unsuccesful"); cachePort->cache->sendResult(pkt, success); if (success && cachePort->cache->doMasterRequest()) { //Still more to issue, rerequest in 1 cycle pkt = NULL; this->schedule(curTick+1); } } else { //CSHR pkt = cachePort->cache->getCoherencePacket(); bool success = cachePort->sendTiming(pkt); if (success && cachePort->cache->doSlaveRequest()) { //Still more to issue, rerequest in 1 cycle pkt = NULL; this->schedule(curTick+1); } } return; } //Response //Know the packet to send pkt->result = Packet::Success; pkt->makeTimingResponse(); if (!cachePort->drainList.empty()) { //Already blocked waiting for bus, just append cachePort->drainList.push_back(pkt); } else if (!cachePort->sendTiming(pkt)) { //It failed, save it to list of drain events cachePort->drainList.push_back(pkt); } } const char * BaseCache::CacheEvent::description() { return "timing event\n"; } Port* BaseCache::getPort(const std::string &if_name, int idx) { if (if_name == "") { if(cpuSidePort == NULL) cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true); return cpuSidePort; } else if (if_name == "functional") { if(cpuSidePort == NULL) cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true); return cpuSidePort; } else if (if_name == "cpu_side") { if(cpuSidePort == NULL) cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true); return cpuSidePort; } else if (if_name == "mem_side") { if (memSidePort != NULL) panic("Already have a mem side for this cache\n"); memSidePort = new CachePort(name() + "-mem_side_port", this, false); return memSidePort; } else panic("Port name %s unrecognized\n", if_name); } void BaseCache::init() { if (!cpuSidePort || !memSidePort) panic("Cache not hooked up on both sides\n"); cpuSidePort->sendStatusChange(Port::RangeChange); } void BaseCache::regStats() { Request temp_req((Addr) NULL, 4, 0); Packet::Command temp_cmd = Packet::ReadReq; Packet temp_pkt(&temp_req, temp_cmd, 0); //@todo FIx command strings so this isn't neccessary temp_pkt.allocate(); //Temp allocate, all need data using namespace Stats; // Hit statistics for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) { Packet::Command cmd = (Packet::Command)access_idx; const string &cstr = temp_pkt.cmdIdxToString(cmd); hits[access_idx] .init(maxThreadsPerCPU) .name(name() + "." + cstr + "_hits") .desc("number of " + cstr + " hits") .flags(total | nozero | nonan) ; } demandHits .name(name() + ".demand_hits") .desc("number of demand (read+write) hits") .flags(total) ; demandHits = hits[Packet::ReadReq] + hits[Packet::WriteReq]; overallHits .name(name() + ".overall_hits") .desc("number of overall hits") .flags(total) ; overallHits = demandHits + hits[Packet::SoftPFReq] + hits[Packet::HardPFReq] + hits[Packet::Writeback]; // Miss statistics for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) { Packet::Command cmd = (Packet::Command)access_idx; const string &cstr = temp_pkt.cmdIdxToString(cmd); misses[access_idx] .init(maxThreadsPerCPU) .name(name() + "." + cstr + "_misses") .desc("number of " + cstr + " misses") .flags(total | nozero | nonan) ; } demandMisses .name(name() + ".demand_misses") .desc("number of demand (read+write) misses") .flags(total) ; demandMisses = misses[Packet::ReadReq] + misses[Packet::WriteReq]; overallMisses .name(name() + ".overall_misses") .desc("number of overall misses") .flags(total) ; overallMisses = demandMisses + misses[Packet::SoftPFReq] + misses[Packet::HardPFReq] + misses[Packet::Writeback]; // Miss latency statistics for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) { Packet::Command cmd = (Packet::Command)access_idx; const string &cstr = temp_pkt.cmdIdxToString(cmd); missLatency[access_idx] .init(maxThreadsPerCPU) .name(name() + "." + cstr + "_miss_latency") .desc("number of " + cstr + " miss cycles") .flags(total | nozero | nonan) ; } demandMissLatency .name(name() + ".demand_miss_latency") .desc("number of demand (read+write) miss cycles") .flags(total) ; demandMissLatency = missLatency[Packet::ReadReq] + missLatency[Packet::WriteReq]; overallMissLatency .name(name() + ".overall_miss_latency") .desc("number of overall miss cycles") .flags(total) ; overallMissLatency = demandMissLatency + missLatency[Packet::SoftPFReq] + missLatency[Packet::HardPFReq]; // access formulas for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) { Packet::Command cmd = (Packet::Command)access_idx; const string &cstr = temp_pkt.cmdIdxToString(cmd); accesses[access_idx] .name(name() + "." + cstr + "_accesses") .desc("number of " + cstr + " accesses(hits+misses)") .flags(total | nozero | nonan) ; accesses[access_idx] = hits[access_idx] + misses[access_idx]; } demandAccesses .name(name() + ".demand_accesses") .desc("number of demand (read+write) accesses") .flags(total) ; demandAccesses = demandHits + demandMisses; overallAccesses .name(name() + ".overall_accesses") .desc("number of overall (read+write) accesses") .flags(total) ; overallAccesses = overallHits + overallMisses; // miss rate formulas for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) { Packet::Command cmd = (Packet::Command)access_idx; const string &cstr = temp_pkt.cmdIdxToString(cmd); missRate[access_idx] .name(name() + "." + cstr + "_miss_rate") .desc("miss rate for " + cstr + " accesses") .flags(total | nozero | nonan) ; missRate[access_idx] = misses[access_idx] / accesses[access_idx]; } demandMissRate .name(name() + ".demand_miss_rate") .desc("miss rate for demand accesses") .flags(total) ; demandMissRate = demandMisses / demandAccesses; overallMissRate .name(name() + ".overall_miss_rate") .desc("miss rate for overall accesses") .flags(total) ; overallMissRate = overallMisses / overallAccesses; // miss latency formulas for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) { Packet::Command cmd = (Packet::Command)access_idx; const string &cstr = temp_pkt.cmdIdxToString(cmd); avgMissLatency[access_idx] .name(name() + "." + cstr + "_avg_miss_latency") .desc("average " + cstr + " miss latency") .flags(total | nozero | nonan) ; avgMissLatency[access_idx] = missLatency[access_idx] / misses[access_idx]; } demandAvgMissLatency .name(name() + ".demand_avg_miss_latency") .desc("average overall miss latency") .flags(total) ; demandAvgMissLatency = demandMissLatency / demandMisses; overallAvgMissLatency .name(name() + ".overall_avg_miss_latency") .desc("average overall miss latency") .flags(total) ; overallAvgMissLatency = overallMissLatency / overallMisses; blocked_cycles.init(NUM_BLOCKED_CAUSES); blocked_cycles .name(name() + ".blocked_cycles") .desc("number of cycles access was blocked") .subname(Blocked_NoMSHRs, "no_mshrs") .subname(Blocked_NoTargets, "no_targets") ; blocked_causes.init(NUM_BLOCKED_CAUSES); blocked_causes .name(name() + ".blocked") .desc("number of cycles access was blocked") .subname(Blocked_NoMSHRs, "no_mshrs") .subname(Blocked_NoTargets, "no_targets") ; avg_blocked .name(name() + ".avg_blocked_cycles") .desc("average number of cycles each access was blocked") .subname(Blocked_NoMSHRs, "no_mshrs") .subname(Blocked_NoTargets, "no_targets") ; avg_blocked = blocked_cycles / blocked_causes; fastWrites .name(name() + ".fast_writes") .desc("number of fast writes performed") ; cacheCopies .name(name() + ".cache_copies") .desc("number of cache copies performed") ; }