/* * Copyright (c) 2010-2015 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2002-2005 The Regents of The University of Michigan * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Erik Hallnor * Dave Greene * Nathan Binkert * Steve Reinhardt * Ron Dreslinski * Andreas Sandberg */ #ifndef __MEM_CACHE_CACHE_IMPL_HH__ #define __MEM_CACHE_CACHE_IMPL_HH__ /** * @file * Cache definitions. */ #include "base/misc.hh" #include "base/types.hh" #include "debug/Cache.hh" #include "debug/CachePort.hh" #include "debug/CacheTags.hh" #include "mem/cache/prefetch/base.hh" #include "mem/cache/blk.hh" #include "mem/cache/cache.hh" #include "mem/cache/mshr.hh" #include "sim/sim_exit.hh" Cache::Cache(const Params *p) : BaseCache(p), tags(p->tags), prefetcher(p->prefetcher), doFastWrites(true), prefetchOnAccess(p->prefetch_on_access) { tempBlock = new CacheBlk(); tempBlock->data = new uint8_t[blkSize]; cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, "CpuSidePort"); memSidePort = new MemSidePort(p->name + ".mem_side", this, "MemSidePort"); tags->setCache(this); if (prefetcher) prefetcher->setCache(this); } Cache::~Cache() { delete [] tempBlock->data; delete tempBlock; delete cpuSidePort; delete memSidePort; } void Cache::regStats() { BaseCache::regStats(); } void Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) { assert(pkt->isRequest()); uint64_t overwrite_val; bool overwrite_mem; uint64_t condition_val64; uint32_t condition_val32; int offset = tags->extractBlkOffset(pkt->getAddr()); uint8_t *blk_data = blk->data + offset; assert(sizeof(uint64_t) >= pkt->getSize()); overwrite_mem = true; // keep a copy of our possible write value, and copy what is at the // memory address into the packet pkt->writeData((uint8_t *)&overwrite_val); pkt->setData(blk_data); if (pkt->req->isCondSwap()) { if (pkt->getSize() == sizeof(uint64_t)) { condition_val64 = pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val64, blk_data, sizeof(uint64_t)); } else if (pkt->getSize() == sizeof(uint32_t)) { condition_val32 = (uint32_t)pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val32, blk_data, sizeof(uint32_t)); } else panic("Invalid size for conditional read/write\n"); } if (overwrite_mem) { std::memcpy(blk_data, &overwrite_val, pkt->getSize()); blk->status |= BlkDirty; } } void Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk, bool deferred_response, bool pending_downgrade) { assert(pkt->isRequest()); assert(blk && blk->isValid()); // Occasionally this is not true... if we are a lower-level cache // satisfying a string of Read and ReadEx requests from // upper-level caches, a Read will mark the block as shared but we // can satisfy a following ReadEx anyway since we can rely on the // Read requester(s) to have buffered the ReadEx snoop and to // invalidate their blocks after receiving them. // assert(!pkt->needsExclusive() || blk->isWritable()); assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); // Check RMW operations first since both isRead() and // isWrite() will be true for them if (pkt->cmd == MemCmd::SwapReq) { cmpAndSwap(blk, pkt); } else if (pkt->isWrite() && (!pkt->isWriteInvalidate() || isTopLevel)) { assert(blk->isWritable()); // Write or WriteInvalidate at the first cache with block in Exclusive if (blk->checkWrite(pkt)) { pkt->writeDataToBlock(blk->data, blkSize); } // Always mark the line as dirty even if we are a failed // StoreCond so we supply data to any snoops that have // appended themselves to this cache before knowing the store // will fail. blk->status |= BlkDirty; DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); } else if (pkt->isRead()) { if (pkt->isLLSC()) { blk->trackLoadLocked(pkt); } pkt->setDataFromBlock(blk->data, blkSize); if (pkt->getSize() == blkSize) { // special handling for coherent block requests from // upper-level caches if (pkt->needsExclusive()) { // if we have a dirty copy, make sure the recipient // keeps it marked dirty if (blk->isDirty()) { pkt->assertMemInhibit(); } // on ReadExReq we give up our copy unconditionally if (blk != tempBlock) tags->invalidate(blk); blk->invalidate(); } else if (blk->isWritable() && !pending_downgrade && !pkt->sharedAsserted() && !pkt->req->isInstFetch()) { // we can give the requester an exclusive copy (by not // asserting shared line) on a read request if: // - we have an exclusive copy at this level (& below) // - we don't have a pending snoop from below // signaling another read request // - no other cache above has a copy (otherwise it // would have asseretd shared line on request) // - we are not satisfying an instruction fetch (this // prevents dirty data in the i-cache) if (blk->isDirty()) { // special considerations if we're owner: if (!deferred_response && !isTopLevel) { // if we are responding immediately and can // signal that we're transferring ownership // along with exclusivity, do so pkt->assertMemInhibit(); blk->status &= ~BlkDirty; } else { // if we're responding after our own miss, // there's a window where the recipient didn't // know it was getting ownership and may not // have responded to snoops correctly, so we // can't pass off ownership *or* exclusivity pkt->assertShared(); } } } else { // otherwise only respond with a shared copy pkt->assertShared(); } } } else { // Upgrade or WriteInvalidate at a different cache than received it. // Since we have it Exclusively (E or M), we ack then invalidate. assert(pkt->isUpgrade() || (pkt->isWriteInvalidate() && !isTopLevel)); assert(blk != tempBlock); tags->invalidate(blk); blk->invalidate(); DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); } } ///////////////////////////////////////////////////// // // MSHR helper functions // ///////////////////////////////////////////////////// void Cache::markInService(MSHR *mshr, bool pending_dirty_resp) { markInServiceInternal(mshr, pending_dirty_resp); #if 0 if (mshr->originalCmd == MemCmd::HardPFReq) { DPRINTF(HWPrefetch, "Marking a HW_PF in service\n"); //Also clear pending if need be if (!prefetcher->havePending()) { deassertMemSideBusRequest(Request_PF); } } #endif } void Cache::squash(int threadNum) { bool unblock = false; BlockedCause cause = NUM_BLOCKED_CAUSES; if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) { noTargetMSHR = NULL; unblock = true; cause = Blocked_NoTargets; } if (mshrQueue.isFull()) { unblock = true; cause = Blocked_NoMSHRs; } mshrQueue.squash(threadNum); if (unblock && !mshrQueue.isFull()) { clearBlocked(cause); } } ///////////////////////////////////////////////////// // // Access path: requests coming in from the CPU side // ///////////////////////////////////////////////////// bool Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, PacketList &writebacks) { // sanity check assert(pkt->isRequest()); DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); if (pkt->req->isUncacheable()) { DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(), pkt->req->isInstFetch() ? " (ifetch)" : "", pkt->getAddr()); if (pkt->req->isClearLL()) tags->clearLocks(); // flush and invalidate any existing block CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); if (old_blk && old_blk->isValid()) { if (old_blk->isDirty()) writebacks.push_back(writebackBlk(old_blk)); tags->invalidate(old_blk); old_blk->invalidate(); } blk = NULL; // lookupLatency is the latency in case the request is uncacheable. lat = lookupLatency; return false; } int id = pkt->req->hasContextId() ? pkt->req->contextId() : -1; // Here lat is the value passed as parameter to accessBlock() function // that can modify its value. blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id); DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(), pkt->req->isInstFetch() ? " (ifetch)" : "", pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns", blk ? "hit " + blk->print() : "miss"); // Writeback handling is special case. We can write the block into // the cache without having a writeable copy (or any copy at all). if (pkt->cmd == MemCmd::Writeback) { assert(blkSize == pkt->getSize()); if (blk == NULL) { // need to do a replacement blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); if (blk == NULL) { // no replaceable block available: give up, fwd to next level. incMissCount(pkt); return false; } tags->insertBlock(pkt, blk); blk->status = (BlkValid | BlkReadable); if (pkt->isSecure()) { blk->status |= BlkSecure; } } blk->status |= BlkDirty; if (pkt->isSupplyExclusive()) { blk->status |= BlkWritable; } // nothing else to do; writeback doesn't expect response assert(!pkt->needsResponse()); std::memcpy(blk->data, pkt->getConstPtr(), blkSize); DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); incHitCount(pkt); return true; } else if ((blk != NULL) && (pkt->needsExclusive() ? blk->isWritable() : blk->isReadable())) { // OK to satisfy access incHitCount(pkt); satisfyCpuSideRequest(pkt, blk); return true; } // Can't satisfy access normally... either no block (blk == NULL) // or have block but need exclusive & only have shared. incMissCount(pkt); if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) { // complete miss on store conditional... just give up now pkt->req->setExtraData(0); return true; } return false; } class ForwardResponseRecord : public Packet::SenderState { public: ForwardResponseRecord() {} }; void Cache::recvTimingSnoopResp(PacketPtr pkt) { DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); assert(pkt->isResponse()); // must be cache-to-cache response from upper to lower level ForwardResponseRecord *rec = dynamic_cast(pkt->senderState); assert(!system->bypassCaches()); if (rec == NULL) { // @todo What guarantee do we have that this HardPFResp is // actually for this cache, and not a cache closer to the // memory? assert(pkt->cmd == MemCmd::HardPFResp); // Check if it's a prefetch response and handle it. We shouldn't // get any other kinds of responses without FRRs. DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); recvTimingResp(pkt); return; } pkt->popSenderState(); delete rec; // forwardLatency is set here because there is a response from an // upper level cache. // To pay the delay that occurs if the packet comes from the bus, // we charge also headerDelay. Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; // Reset the timing of the packet. pkt->headerDelay = pkt->payloadDelay = 0; memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); } void Cache::promoteWholeLineWrites(PacketPtr pkt) { // Cache line clearing instructions if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { pkt->cmd = MemCmd::WriteInvalidateReq; DPRINTF(Cache, "packet promoted from Write to WriteInvalidate\n"); assert(isTopLevel); // should only happen at L1 or I/O cache } } bool Cache::recvTimingReq(PacketPtr pkt) { DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print()); //@todo Add back in MemDebug Calls // MemDebug::cacheAccess(pkt); /// @todo temporary hack to deal with memory corruption issue until /// 4-phase transactions are complete for (int x = 0; x < pendingDelete.size(); x++) delete pendingDelete[x]; pendingDelete.clear(); assert(pkt->isRequest()); // Just forward the packet if caches are disabled. if (system->bypassCaches()) { // @todo This should really enqueue the packet rather bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); assert(success); return true; } promoteWholeLineWrites(pkt); if (pkt->memInhibitAsserted()) { // a cache above us (but not where the packet came from) is // responding to the request DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); assert(!pkt->req->isUncacheable()); // if the packet needs exclusive, and the cache that has // promised to respond (setting the inhibit flag) is not // providing exclusive (it is in O vs M state), we know that // there may be other shared copies in the system; go out and // invalidate them all if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) { // create a downstream express snoop with cleared packet // flags, there is no need to allocate any data as the // packet is merely used to co-ordinate state transitions Packet *snoop_pkt = new Packet(pkt, true, false); // also reset the bus time that the original packet has // not yet paid for snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; // make this an instantaneous express snoop, and let the // other caches in the system know that the packet is // inhibited, because we have found the authorative copy // (O) that will supply the right data snoop_pkt->setExpressSnoop(); snoop_pkt->assertMemInhibit(); // this express snoop travels towards the memory, and at // every crossbar it is snooped upwards thus reaching // every cache in the system bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); // express snoops always succeed assert(success); // main memory will delete the packet } /// @todo nominally we should just delete the packet here, /// however, until 4-phase stuff we can't because sending /// cache is still relying on it pendingDelete.push_back(pkt); // no need to take any action in this particular cache as the // caches along the path to memory are allowed to keep lines // in a shared state, and a cache above us already committed // to responding return true; } // anything that is merely forwarded pays for the forward latency and // the delay provided by the crossbar Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; // We use lookupLatency here because it is used to specify the latency // to access. Cycles lat = lookupLatency; CacheBlk *blk = NULL; bool satisfied = false; { PacketList writebacks; // Note that lat is passed by reference here. The function // access() calls accessBlock() which can modify lat value. satisfied = access(pkt, blk, lat, writebacks); // copy writebacks to write buffer here to ensure they logically // proceed anything happening below while (!writebacks.empty()) { PacketPtr wbPkt = writebacks.front(); // We use forwardLatency here because we are copying // writebacks to write buffer. allocateWriteBuffer(wbPkt, forward_time, true); writebacks.pop_front(); } } // Here we charge the headerDelay that takes into account the latencies // of the bus, if the packet comes from it. // The latency charged it is just lat that is the value of lookupLatency // modified by access() function, or if not just lookupLatency. // In case of a hit we are neglecting response latency. // In case of a miss we are neglecting forward latency. Tick request_time = clockEdge(lat) + pkt->headerDelay; // Here we reset the timing of the packet. pkt->headerDelay = pkt->payloadDelay = 0; // track time of availability of next prefetch, if any Tick next_pf_time = MaxTick; bool needsResponse = pkt->needsResponse(); if (satisfied) { // should never be satisfying an uncacheable access as we // flush and invalidate any existing block as part of the // lookup assert(!pkt->req->isUncacheable()); // hit (for all other request types) if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) { if (blk) blk->status &= ~BlkHWPrefetched; // Don't notify on SWPrefetch if (!pkt->cmd.isSWPrefetch()) next_pf_time = prefetcher->notify(pkt); } if (needsResponse) { pkt->makeTimingResponse(); // @todo: Make someone pay for this pkt->headerDelay = pkt->payloadDelay = 0; // In this case we are considering request_time that takes // into account the delay of the xbar, if any, and just // lat, neglecting responseLatency, modelling hit latency // just as lookupLatency or or the value of lat overriden // by access(), that calls accessBlock() function. cpuSidePort->schedTimingResp(pkt, request_time); } else { /// @todo nominally we should just delete the packet here, /// however, until 4-phase stuff we can't because sending /// cache is still relying on it pendingDelete.push_back(pkt); } } else { // miss Addr blk_addr = blockAlign(pkt->getAddr()); // ignore any existing MSHR if we are dealing with an // uncacheable request MSHR *mshr = pkt->req->isUncacheable() ? nullptr : mshrQueue.findMatch(blk_addr, pkt->isSecure()); // Software prefetch handling: // To keep the core from waiting on data it won't look at // anyway, send back a response with dummy data. Miss handling // will continue asynchronously. Unfortunately, the core will // insist upon freeing original Packet/Request, so we have to // create a new pair with a different lifecycle. Note that this // processing happens before any MSHR munging on the behalf of // this request because this new Request will be the one stored // into the MSHRs, not the original. if (pkt->cmd.isSWPrefetch() && isTopLevel) { assert(needsResponse); assert(pkt->req->hasPaddr()); assert(!pkt->req->isUncacheable()); // There's no reason to add a prefetch as an additional target // to an existing MSHR. If an outstanding request is already // in progress, there is nothing for the prefetch to do. // If this is the case, we don't even create a request at all. PacketPtr pf = nullptr; if (!mshr) { // copy the request and create a new SoftPFReq packet RequestPtr req = new Request(pkt->req->getPaddr(), pkt->req->getSize(), pkt->req->getFlags(), pkt->req->masterId()); pf = new Packet(req, pkt->cmd); pf->allocate(); assert(pf->getAddr() == pkt->getAddr()); assert(pf->getSize() == pkt->getSize()); } pkt->makeTimingResponse(); // for debugging, set all the bits in the response data // (also keeps valgrind from complaining when debugging settings // print out instruction results) std::memset(pkt->getPtr(), 0xFF, pkt->getSize()); // request_time is used here, taking into account lat and the delay // charged if the packet comes from the xbar. cpuSidePort->schedTimingResp(pkt, request_time); // If an outstanding request is in progress (we found an // MSHR) this is set to null pkt = pf; } if (mshr) { /// MSHR hit /// @note writebacks will be checked in getNextMSHR() /// for any conflicting requests to the same block //@todo remove hw_pf here // Coalesce unless it was a software prefetch (see above). if (pkt) { DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); assert(pkt->req->masterId() < system->maxMasters()); mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; if (mshr->threadNum != 0/*pkt->req->threadId()*/) { mshr->threadNum = -1; } // We use forward_time here because it is the same // considering new targets. We have multiple requests for the // same address here. It specifies the latency to allocate an // internal buffer and to schedule an event to the queued // port and also takes into account the additional delay of // the xbar. mshr->allocateTarget(pkt, forward_time, order++); if (mshr->getNumTargets() == numTarget) { noTargetMSHR = mshr; setBlocked(Blocked_NoTargets); // need to be careful with this... if this mshr isn't // ready yet (i.e. time > curTick()), we don't want to // move it ahead of mshrs that are ready // mshrQueue.moveToFront(mshr); } // We should call the prefetcher reguardless if the request is // satisfied or not, reguardless if the request is in the MSHR or // not. The request could be a ReadReq hit, but still not // satisfied (potentially because of a prior write to the same // cache line. So, even when not satisfied, tehre is an MSHR // already allocated for this, we need to let the prefetcher know // about the request if (prefetcher) { // Don't notify on SWPrefetch if (!pkt->cmd.isSWPrefetch()) next_pf_time = prefetcher->notify(pkt); } } } else { // no MSHR if (!pkt->req->isUncacheable()) { assert(pkt->req->masterId() < system->maxMasters()); mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; } if (pkt->cmd == MemCmd::Writeback || (pkt->req->isUncacheable() && pkt->isWrite())) { // We use forward_time here because there is an // uncached memory write, forwarded to WriteBuffer. It // specifies the latency to allocate an internal buffer and to // schedule an event to the queued port and also takes into // account the additional delay of the xbar. allocateWriteBuffer(pkt, forward_time, true); } else { if (blk && blk->isValid()) { // should have flushed and have no valid block assert(!pkt->req->isUncacheable()); // If we have a write miss to a valid block, we // need to mark the block non-readable. Otherwise // if we allow reads while there's an outstanding // write miss, the read could return stale data // out of the cache block... a more aggressive // system could detect the overlap (if any) and // forward data out of the MSHRs, but we don't do // that yet. Note that we do need to leave the // block valid so that it stays in the cache, in // case we get an upgrade response (and hence no // new data) when the write miss completes. // As long as CPUs do proper store/load forwarding // internally, and have a sufficiently weak memory // model, this is probably unnecessary, but at some // point it must have seemed like we needed it... assert(pkt->needsExclusive()); assert(!blk->isWritable()); blk->status &= ~BlkReadable; } // Here we are using forward_time, modelling the latency of // a miss (outbound) just as forwardLatency, neglecting the // lookupLatency component. In this case this latency value // specifies the latency to allocate an internal buffer and to // schedule an event to the queued port, when a cacheable miss // is forwarded to MSHR queue. // We take also into account the additional delay of the xbar. allocateMissBuffer(pkt, forward_time, true); } if (prefetcher) { // Don't notify on SWPrefetch if (!pkt->cmd.isSWPrefetch()) next_pf_time = prefetcher->notify(pkt); } } } // Here we condiser just forward_time. if (next_pf_time != MaxTick) requestMemSideBus(Request_PF, std::max(clockEdge(forwardLatency), next_pf_time)); return true; } // See comment in cache.hh. PacketPtr Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk, bool needsExclusive) const { bool blkValid = blk && blk->isValid(); if (cpu_pkt->req->isUncacheable()) { // note that at the point we see the uncacheable request we // flush any block, but there could be an outstanding MSHR, // and the cache could have filled again before we actually // send out the forwarded uncacheable request (blk could thus // be non-null) return NULL; } if (!blkValid && (cpu_pkt->cmd == MemCmd::Writeback || cpu_pkt->isUpgrade())) { // Writebacks that weren't allocated in access() and upgrades // from upper-level caches that missed completely just go // through. return NULL; } assert(cpu_pkt->needsResponse()); MemCmd cmd; // @TODO make useUpgrades a parameter. // Note that ownership protocols require upgrade, otherwise a // write miss on a shared owned block will generate a ReadExcl, // which will clobber the owned copy. const bool useUpgrades = true; if (blkValid && useUpgrades) { // only reason to be here is that blk is shared // (read-only) and we need exclusive assert(needsExclusive); assert(!blk->isWritable()); cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || cpu_pkt->cmd == MemCmd::StoreCondFailReq) { // Even though this SC will fail, we still need to send out the // request and get the data to supply it to other snoopers in the case // where the determination the StoreCond fails is delayed due to // all caches not being on the same local bus. cmd = MemCmd::SCUpgradeFailReq; } else if (cpu_pkt->isWriteInvalidate()) { cmd = cpu_pkt->cmd; } else { // block is invalid cmd = needsExclusive ? MemCmd::ReadExReq : MemCmd::ReadReq; } PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); // the packet should be block aligned assert(pkt->getAddr() == blockAlign(pkt->getAddr())); pkt->allocate(); DPRINTF(Cache, "%s created %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); return pkt; } Tick Cache::recvAtomic(PacketPtr pkt) { // We are in atomic mode so we pay just for lookupLatency here. Cycles lat = lookupLatency; // @TODO: make this a parameter bool last_level_cache = false; // Forward the request if the system is in cache bypass mode. if (system->bypassCaches()) return ticksToCycles(memSidePort->sendAtomic(pkt)); promoteWholeLineWrites(pkt); if (pkt->memInhibitAsserted()) { assert(!pkt->req->isUncacheable()); // have to invalidate ourselves and any lower caches even if // upper cache will be responding if (pkt->isInvalidate()) { CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); if (blk && blk->isValid()) { tags->invalidate(blk); blk->invalidate(); DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):" " invalidating\n", pkt->cmdString(), pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); } if (!last_level_cache) { DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n", pkt->cmdString(), pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); lat += ticksToCycles(memSidePort->sendAtomic(pkt)); } } else { DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n", pkt->cmdString(), pkt->getAddr()); } return lat * clockPeriod(); } // should assert here that there are no outstanding MSHRs or // writebacks... that would mean that someone used an atomic // access in timing mode CacheBlk *blk = NULL; PacketList writebacks; bool satisfied = access(pkt, blk, lat, writebacks); // handle writebacks resulting from the access here to ensure they // logically proceed anything happening below while (!writebacks.empty()){ PacketPtr wbPkt = writebacks.front(); memSidePort->sendAtomic(wbPkt); writebacks.pop_front(); delete wbPkt; } if (!satisfied) { // MISS PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive()); bool is_forward = (bus_pkt == NULL); if (is_forward) { // just forwarding the same request to the next level // no local cache operation involved bus_pkt = pkt; } DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n", bus_pkt->cmdString(), bus_pkt->getAddr(), bus_pkt->isSecure() ? "s" : "ns"); #if TRACING_ON CacheBlk::State old_state = blk ? blk->status : 0; #endif lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); // We are now dealing with the response handling DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n", bus_pkt->cmdString(), bus_pkt->getAddr(), bus_pkt->isSecure() ? "s" : "ns", old_state); // If packet was a forward, the response (if any) is already // in place in the bus_pkt == pkt structure, so we don't need // to do anything. Otherwise, use the separate bus_pkt to // generate response to pkt and then delete it. if (!is_forward) { if (pkt->needsResponse()) { assert(bus_pkt->isResponse()); if (bus_pkt->isError()) { pkt->makeAtomicResponse(); pkt->copyError(bus_pkt); } else if (pkt->isWriteInvalidate()) { // note the use of pkt, not bus_pkt here. if (isTopLevel) { blk = handleFill(pkt, blk, writebacks); satisfyCpuSideRequest(pkt, blk); } else if (blk) { satisfyCpuSideRequest(pkt, blk); } } else if (bus_pkt->isRead() || bus_pkt->cmd == MemCmd::UpgradeResp) { // we're updating cache state to allow us to // satisfy the upstream request from the cache blk = handleFill(bus_pkt, blk, writebacks); satisfyCpuSideRequest(pkt, blk); } else { // we're satisfying the upstream request without // modifying cache state, e.g., a write-through pkt->makeAtomicResponse(); } } delete bus_pkt; } } // Note that we don't invoke the prefetcher at all in atomic mode. // It's not clear how to do it properly, particularly for // prefetchers that aggressively generate prefetch candidates and // rely on bandwidth contention to throttle them; these will tend // to pollute the cache in atomic mode since there is no bandwidth // contention. If we ever do want to enable prefetching in atomic // mode, though, this is the place to do it... see timingAccess() // for an example (though we'd want to issue the prefetch(es) // immediately rather than calling requestMemSideBus() as we do // there). // Handle writebacks (from the response handling) if needed while (!writebacks.empty()){ PacketPtr wbPkt = writebacks.front(); memSidePort->sendAtomic(wbPkt); writebacks.pop_front(); delete wbPkt; } if (pkt->needsResponse()) { pkt->makeAtomicResponse(); } return lat * clockPeriod(); } void Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) { if (system->bypassCaches()) { // Packets from the memory side are snoop request and // shouldn't happen in bypass mode. assert(fromCpuSide); // The cache should be flushed if we are in cache bypass mode, // so we don't need to check if we need to update anything. memSidePort->sendFunctional(pkt); return; } Addr blk_addr = blockAlign(pkt->getAddr()); bool is_secure = pkt->isSecure(); CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); pkt->pushLabel(name()); CacheBlkPrintWrapper cbpw(blk); // Note that just because an L2/L3 has valid data doesn't mean an // L1 doesn't have a more up-to-date modified copy that still // needs to be found. As a result we always update the request if // we have it, but only declare it satisfied if we are the owner. // see if we have data at all (owned or otherwise) bool have_data = blk && blk->isValid() && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, blk->data); // data we have is dirty if marked as such or if valid & ownership // pending due to outstanding UpgradeReq bool have_dirty = have_data && (blk->isDirty() || (mshr && mshr->inService && mshr->isPendingDirty())); bool done = have_dirty || cpuSidePort->checkFunctional(pkt) || mshrQueue.checkFunctional(pkt, blk_addr) || writeBuffer.checkFunctional(pkt, blk_addr) || memSidePort->checkFunctional(pkt); DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n", pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns", (blk && blk->isValid()) ? "valid " : "", have_data ? "data " : "", done ? "done " : ""); // We're leaving the cache, so pop cache->name() label pkt->popLabel(); if (done) { pkt->makeResponse(); } else { // if it came as a request from the CPU side then make sure it // continues towards the memory side if (fromCpuSide) { memSidePort->sendFunctional(pkt); } else if (forwardSnoops && cpuSidePort->isSnooping()) { // if it came from the memory side, it must be a snoop request // and we should only forward it if we are forwarding snoops cpuSidePort->sendFunctionalSnoop(pkt); } } } ///////////////////////////////////////////////////// // // Response handling: responses from the memory side // ///////////////////////////////////////////////////// void Cache::recvTimingResp(PacketPtr pkt) { assert(pkt->isResponse()); MSHR *mshr = dynamic_cast(pkt->senderState); bool is_error = pkt->isError(); assert(mshr); if (is_error) { DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), " "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns", pkt->cmdString()); } DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n", pkt->cmdString(), pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns"); MSHRQueue *mq = mshr->queue; bool wasFull = mq->isFull(); if (mshr == noTargetMSHR) { // we always clear at least one target clearBlocked(Blocked_NoTargets); noTargetMSHR = NULL; } // Initial target is used just for stats MSHR::Target *initial_tgt = mshr->getTarget(); CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); Tick miss_latency = curTick() - initial_tgt->recvTime; PacketList writebacks; // We need forward_time here because we have a call of // allocateWriteBuffer() that need this parameter to specify the // time to request the bus. In this case we use forward latency // because there is a writeback. We pay also here for headerDelay // that is charged of bus latencies if the packet comes from the // bus. Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; if (pkt->req->isUncacheable()) { assert(pkt->req->masterId() < system->maxMasters()); mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += miss_latency; } else { assert(pkt->req->masterId() < system->maxMasters()); mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += miss_latency; } bool is_fill = !mshr->isForward && (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); if (is_fill && !is_error) { DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", pkt->getAddr()); // give mshr a chance to do some dirty work mshr->handleFill(pkt, blk); blk = handleFill(pkt, blk, writebacks); assert(blk != NULL); } // First offset for critical word first calculations int initial_offset = initial_tgt->pkt->getOffset(blkSize); while (mshr->hasTargets()) { MSHR::Target *target = mshr->getTarget(); Packet *tgt_pkt = target->pkt; switch (target->source) { case MSHR::Target::FromCPU: Tick completion_time; // Here we charge on completion_time the delay of the xbar if the // packet comes from it, charged on headerDelay. completion_time = pkt->headerDelay; // Software prefetch handling for cache closest to core if (tgt_pkt->cmd.isSWPrefetch() && isTopLevel) { // a software prefetch would have already been ack'd immediately // with dummy data so the core would be able to retire it. // this request completes right here, so we deallocate it. delete tgt_pkt->req; delete tgt_pkt; break; // skip response } // unlike the other packet flows, where data is found in other // caches or memory and brought back, write invalidates always // have the data right away, so the above check for "is fill?" // cannot actually be determined until examining the stored MSHR // state. We "catch up" with that logic here, which is duplicated // from above. if (tgt_pkt->isWriteInvalidate() && isTopLevel) { assert(!is_error); // NB: we use the original packet here and not the response! mshr->handleFill(tgt_pkt, blk); blk = handleFill(tgt_pkt, blk, writebacks); assert(blk != NULL); is_fill = true; } if (is_fill) { satisfyCpuSideRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade()); // How many bytes past the first request is this one int transfer_offset = tgt_pkt->getOffset(blkSize) - initial_offset; if (transfer_offset < 0) { transfer_offset += blkSize; } // If not critical word (offset) return payloadDelay. // responseLatency is the latency of the return path // from lower level caches/memory to an upper level cache or // the core. completion_time += clockEdge(responseLatency) + (transfer_offset ? pkt->payloadDelay : 0); assert(!tgt_pkt->req->isUncacheable()); assert(tgt_pkt->req->masterId() < system->maxMasters()); missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += completion_time - target->recvTime; } else if (pkt->cmd == MemCmd::UpgradeFailResp) { // failed StoreCond upgrade assert(tgt_pkt->cmd == MemCmd::StoreCondReq || tgt_pkt->cmd == MemCmd::StoreCondFailReq || tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); // responseLatency is the latency of the return path // from lower level caches/memory to an upper level cache or // the core. completion_time += clockEdge(responseLatency) + pkt->payloadDelay; tgt_pkt->req->setExtraData(0); } else { // not a cache fill, just forwarding response // responseLatency is the latency of the return path // from lower level cahces/memory to the core. completion_time += clockEdge(responseLatency) + pkt->payloadDelay; if (pkt->isRead() && !is_error) { // sanity check assert(pkt->getAddr() == tgt_pkt->getAddr()); assert(pkt->getSize() >= tgt_pkt->getSize()); tgt_pkt->setData(pkt->getConstPtr()); } } tgt_pkt->makeTimingResponse(); // if this packet is an error copy that to the new packet if (is_error) tgt_pkt->copyError(pkt); if (tgt_pkt->cmd == MemCmd::ReadResp && (pkt->isInvalidate() || mshr->hasPostInvalidate())) { // If intermediate cache got ReadRespWithInvalidate, // propagate that. Response should not have // isInvalidate() set otherwise. tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n", __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr()); } // Reset the bus additional time as it is now accounted for tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; cpuSidePort->schedTimingResp(tgt_pkt, completion_time); break; case MSHR::Target::FromPrefetcher: assert(tgt_pkt->cmd == MemCmd::HardPFReq); if (blk) blk->status |= BlkHWPrefetched; delete tgt_pkt->req; delete tgt_pkt; break; case MSHR::Target::FromSnoop: // I don't believe that a snoop can be in an error state assert(!is_error); // response to snoop request DPRINTF(Cache, "processing deferred snoop...\n"); assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate())); handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); break; default: panic("Illegal target->source enum %d\n", target->source); } mshr->popTarget(); } if (blk && blk->isValid()) { if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) && (!pkt->isWriteInvalidate() || !isTopLevel)) { assert(blk != tempBlock); tags->invalidate(blk); blk->invalidate(); } else if (mshr->hasPostDowngrade()) { blk->status &= ~BlkWritable; } } if (mshr->promoteDeferredTargets()) { // avoid later read getting stale data while write miss is // outstanding.. see comment in timingAccess() if (blk) { blk->status &= ~BlkReadable; } mq = mshr->queue; mq->markPending(mshr); requestMemSideBus((RequestCause)mq->index, clockEdge() + pkt->payloadDelay); } else { mq->deallocate(mshr); if (wasFull && !mq->isFull()) { clearBlocked((BlockedCause)mq->index); } // Request the bus for a prefetch if this deallocation freed enough // MSHRs for a prefetch to take place if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) { Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), curTick()); if (next_pf_time != MaxTick) requestMemSideBus(Request_PF, next_pf_time); } } // reset the xbar additional timinig as it is now accounted for pkt->headerDelay = pkt->payloadDelay = 0; // copy writebacks to write buffer while (!writebacks.empty()) { PacketPtr wbPkt = writebacks.front(); allocateWriteBuffer(wbPkt, clockEdge(forwardLatency), true); writebacks.pop_front(); } // if we used temp block, clear it out if (blk == tempBlock) { if (blk->isDirty()) { // We use forwardLatency here because we are copying // writebacks to write buffer. It specifies the latency to // allocate an internal buffer and to schedule an event to the // queued port. allocateWriteBuffer(writebackBlk(blk), forward_time, true); } blk->invalidate(); } DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__, pkt->cmdString(), pkt->getAddr()); delete pkt; } PacketPtr Cache::writebackBlk(CacheBlk *blk) { assert(blk && blk->isValid() && blk->isDirty()); writebacks[Request::wbMasterId]++; Request *writebackReq = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, Request::wbMasterId); if (blk->isSecure()) writebackReq->setFlags(Request::SECURE); writebackReq->taskId(blk->task_id); blk->task_id= ContextSwitchTaskId::Unknown; blk->tickInserted = curTick(); PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback); if (blk->isWritable()) { writeback->setSupplyExclusive(); } writeback->allocate(); std::memcpy(writeback->getPtr(), blk->data, blkSize); blk->status &= ~BlkDirty; return writeback; } void Cache::memWriteback() { CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); tags->forEachBlk(visitor); } void Cache::memInvalidate() { CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); tags->forEachBlk(visitor); } bool Cache::isDirty() const { CacheBlkIsDirtyVisitor visitor; tags->forEachBlk(visitor); return visitor.isDirty(); } bool Cache::writebackVisitor(CacheBlk &blk) { if (blk.isDirty()) { assert(blk.isValid()); Request request(tags->regenerateBlkAddr(blk.tag, blk.set), blkSize, 0, Request::funcMasterId); request.taskId(blk.task_id); Packet packet(&request, MemCmd::WriteReq); packet.dataStatic(blk.data); memSidePort->sendFunctional(&packet); blk.status &= ~BlkDirty; } return true; } bool Cache::invalidateVisitor(CacheBlk &blk) { if (blk.isDirty()) warn_once("Invalidating dirty cache lines. Expect things to break.\n"); if (blk.isValid()) { assert(!blk.isDirty()); tags->invalidate(&blk); blk.invalidate(); } return true; } CacheBlk* Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) { CacheBlk *blk = tags->findVictim(addr); if (blk->isValid()) { Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); if (repl_mshr) { // must be an outstanding upgrade request // on a block we're about to replace... assert(!blk->isWritable() || blk->isDirty()); assert(repl_mshr->needsExclusive()); // too hard to replace block with transient state // allocation failed, block not inserted return NULL; } else { DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns", addr, is_secure ? "s" : "ns", blk->isDirty() ? "writeback" : "clean"); if (blk->isDirty()) { // Save writeback packet for handling by caller writebacks.push_back(writebackBlk(blk)); } } } return blk; } // Note that the reason we return a list of writebacks rather than // inserting them directly in the write buffer is that this function // is called by both atomic and timing-mode accesses, and in atomic // mode we don't mess with the write buffer (we just perform the // writebacks atomically once the original request is complete). CacheBlk* Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks) { assert(pkt->isResponse() || pkt->isWriteInvalidate()); Addr addr = pkt->getAddr(); bool is_secure = pkt->isSecure(); #if TRACING_ON CacheBlk::State old_state = blk ? blk->status : 0; #endif if (blk == NULL) { // better have read new data... assert(pkt->hasData()); // only read responses and (original) write invalidate req's have data; // note that we don't write the data here for write invalidate - that // happens in the subsequent satisfyCpuSideRequest. assert(pkt->isRead() || pkt->isWriteInvalidate()); // need to do a replacement blk = allocateBlock(addr, is_secure, writebacks); if (blk == NULL) { // No replaceable block... just use temporary storage to // complete the current request and then get rid of it assert(!tempBlock->isValid()); blk = tempBlock; tempBlock->set = tags->extractSet(addr); tempBlock->tag = tags->extractTag(addr); // @todo: set security state as well... DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, is_secure ? "s" : "ns"); } else { tags->insertBlock(pkt, blk); } // we should never be overwriting a valid block assert(!blk->isValid()); } else { // existing block... probably an upgrade assert(blk->tag == tags->extractTag(addr)); // either we're getting new data or the block should already be valid assert(pkt->hasData() || blk->isValid()); // don't clear block status... if block is already dirty we // don't want to lose that } if (is_secure) blk->status |= BlkSecure; blk->status |= BlkValid | BlkReadable; if (!pkt->sharedAsserted()) { blk->status |= BlkWritable; // If we got this via cache-to-cache transfer (i.e., from a // cache that was an owner) and took away that owner's copy, // then we need to write it back. Normally this happens // anyway as a side effect of getting a copy to write it, but // there are cases (such as failed store conditionals or // compare-and-swaps) where we'll demand an exclusive copy but // end up not writing it. if (pkt->memInhibitAsserted()) blk->status |= BlkDirty; } DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", addr, is_secure ? "s" : "ns", old_state, blk->print()); // if we got new data, copy it in (checking for a read response // and a response that has data is the same in the end) if (pkt->isRead()) { // sanity checks assert(pkt->hasData()); assert(pkt->getSize() == blkSize); std::memcpy(blk->data, pkt->getConstPtr(), blkSize); } // We pay for fillLatency here. blk->whenReady = clockEdge() + fillLatency * clockPeriod() + pkt->payloadDelay; return blk; } ///////////////////////////////////////////////////// // // Snoop path: requests coming in from the memory side // ///////////////////////////////////////////////////// void Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, bool already_copied, bool pending_inval) { // sanity check assert(req_pkt->isRequest()); assert(req_pkt->needsResponse()); DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize()); // timing-mode snoop responses require a new packet, unless we // already made a copy... PacketPtr pkt = req_pkt; if (!already_copied) // do not clear flags, and allocate space for data if the // packet needs it (the only packets that carry data are read // responses) pkt = new Packet(req_pkt, false, req_pkt->isRead()); assert(req_pkt->isInvalidate() || pkt->sharedAsserted()); pkt->makeTimingResponse(); if (pkt->isRead()) { pkt->setDataFromBlock(blk_data, blkSize); } if (pkt->cmd == MemCmd::ReadResp && pending_inval) { // Assume we defer a response to a read from a far-away cache // A, then later defer a ReadExcl from a cache B on the same // bus as us. We'll assert MemInhibit in both cases, but in // the latter case MemInhibit will keep the invalidation from // reaching cache A. This special response tells cache A that // it gets the block to satisfy its read, but must immediately // invalidate it. pkt->cmd = MemCmd::ReadRespWithInvalidate; } // Here we consider forward_time, paying for just forward latency and // also charging the delay provided by the xbar. // forward_time is used as send_time in next allocateWriteBuffer(). Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; // Here we reset the timing of the packet. pkt->headerDelay = pkt->payloadDelay = 0; DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(), forward_time); memSidePort->schedTimingSnoopResp(pkt, forward_time, true); } void Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, bool is_deferred, bool pending_inval) { DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); // deferred snoops can only happen in timing mode assert(!(is_deferred && !is_timing)); // pending_inval only makes sense on deferred snoops assert(!(pending_inval && !is_deferred)); assert(pkt->isRequest()); // the packet may get modified if we or a forwarded snooper // responds in atomic mode, so remember a few things about the // original packet up front bool invalidate = pkt->isInvalidate(); bool M5_VAR_USED needs_exclusive = pkt->needsExclusive(); if (forwardSnoops) { // first propagate snoop upward to see if anyone above us wants to // handle it. save & restore packet src since it will get // rewritten to be relative to cpu-side bus (if any) bool alreadyResponded = pkt->memInhibitAsserted(); if (is_timing) { Packet snoopPkt(pkt, true, false); // clear flags, no allocation snoopPkt.setExpressSnoop(); snoopPkt.pushSenderState(new ForwardResponseRecord()); // the snoop packet does not need to wait any additional // time snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; cpuSidePort->sendTimingSnoopReq(&snoopPkt); if (snoopPkt.memInhibitAsserted()) { // cache-to-cache response from some upper cache assert(!alreadyResponded); pkt->assertMemInhibit(); } else { delete snoopPkt.popSenderState(); } if (snoopPkt.sharedAsserted()) { pkt->assertShared(); } // If this request is a prefetch or clean evict and an // upper level signals block present, make sure to // propagate the block presence to the requester. if (snoopPkt.isBlockCached()) { pkt->setBlockCached(); } } else { cpuSidePort->sendAtomicSnoop(pkt); if (!alreadyResponded && pkt->memInhibitAsserted()) { // cache-to-cache response from some upper cache: // forward response to original requester assert(pkt->isResponse()); } } } if (!blk || !blk->isValid()) { DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); return; } else { DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, " "old state is %s\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(), blk->print()); } // we may end up modifying both the block state and the packet (if // we respond in atomic mode), so just figure out what to do now // and then do it later. If we find dirty data while snooping for a // WriteInvalidate, we don't care, since no merging needs to take place. // We need the eviction to happen as normal, but the data needn't be // sent anywhere. nor should the writeback be inhibited at the memory // controller for any reason. bool respond = blk->isDirty() && pkt->needsResponse() && !pkt->isWriteInvalidate(); bool have_exclusive = blk->isWritable(); // Invalidate any prefetch's from below that would strip write permissions // MemCmd::HardPFReq is only observed by upstream caches. After missing // above and in it's own cache, a new MemCmd::ReadReq is created that // downstream caches observe. if (pkt->cmd == MemCmd::HardPFReq) { DPRINTF(Cache, "Squashing prefetch from lower cache %#x\n", pkt->getAddr()); pkt->setBlockCached(); return; } if (pkt->isRead() && !invalidate) { assert(!needs_exclusive); pkt->assertShared(); int bits_to_clear = BlkWritable; const bool haveOwnershipState = true; // for now if (!haveOwnershipState) { // if we don't support pure ownership (dirty && !writable), // have to clear dirty bit here, assume memory snarfs data // on cache-to-cache xfer bits_to_clear |= BlkDirty; } blk->status &= ~bits_to_clear; } if (respond) { // prevent anyone else from responding, cache as well as // memory, and also prevent any memory from even seeing the // request (with current inhibited semantics), note that this // applies both to reads and writes and that for writes it // works thanks to the fact that we still have dirty data and // will write it back at a later point pkt->assertMemInhibit(); if (have_exclusive) { pkt->setSupplyExclusive(); } if (is_timing) { doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); } else { pkt->makeAtomicResponse(); pkt->setDataFromBlock(blk->data, blkSize); } } else if (is_timing && is_deferred) { // if it's a deferred timing snoop then we've made a copy of // the packet, and so if we're not using that copy to respond // then we need to delete it here. delete pkt; } // Do this last in case it deallocates block data or something // like that if (invalidate) { if (blk != tempBlock) tags->invalidate(blk); blk->invalidate(); } DPRINTF(Cache, "new state is %s\n", blk->print()); } void Cache::recvTimingSnoopReq(PacketPtr pkt) { DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); // Snoops shouldn't happen when bypassing caches assert(!system->bypassCaches()); // check if the packet is for an address range covered by this // cache, partly to not waste time looking for it, but also to // ensure that we only forward the snoop upwards if it is within // our address ranges bool in_range = false; for (AddrRangeList::const_iterator r = addrRanges.begin(); r != addrRanges.end(); ++r) { if (r->contains(pkt->getAddr())) { in_range = true; break; } } // Note that some deferred snoops don't have requests, since the // original access may have already completed if ((pkt->req && pkt->req->isUncacheable()) || pkt->cmd == MemCmd::Writeback || !in_range) { //Can't get a hit on an uncacheable address //Revisit this for multi level coherence return; } bool is_secure = pkt->isSecure(); CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); Addr blk_addr = blockAlign(pkt->getAddr()); MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); // Squash any prefetch requests from below on MSHR hits if (mshr && pkt->cmd == MemCmd::HardPFReq) { DPRINTF(Cache, "Setting block present to squash prefetch from" "lower cache on mshr hit %#x\n", pkt->getAddr()); pkt->setBlockCached(); return; } // Let the MSHR itself track the snoop and decide whether we want // to go ahead and do the regular cache snoop if (mshr && mshr->handleSnoop(pkt, order++)) { DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", mshr->print()); if (mshr->getNumTargets() > numTarget) warn("allocating bonus target for snoop"); //handle later return; } //We also need to check the writeback buffers and handle those std::vector writebacks; if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) { DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", pkt->getAddr(), is_secure ? "s" : "ns"); // Look through writebacks for any cachable writes. // We should only ever find a single match assert(writebacks.size() == 1); MSHR *wb_entry = writebacks[0]; assert(!wb_entry->isUncacheable()); assert(wb_entry->getNumTargets() == 1); PacketPtr wb_pkt = wb_entry->getTarget()->pkt; assert(wb_pkt->cmd == MemCmd::Writeback); assert(!pkt->memInhibitAsserted()); pkt->assertMemInhibit(); if (!pkt->needsExclusive()) { pkt->assertShared(); // the writeback is no longer the exclusive copy in the system wb_pkt->clearSupplyExclusive(); } else { // if we're not asserting the shared line, we need to // invalidate our copy. we'll do that below as long as // the packet's invalidate flag is set... assert(pkt->isInvalidate()); } doTimingSupplyResponse(pkt, wb_pkt->getConstPtr(), false, false); if (pkt->isInvalidate()) { // Invalidation trumps our writeback... discard here markInService(wb_entry, false); delete wb_pkt; } } // If this was a shared writeback, there may still be // other shared copies above that require invalidation. // We could be more selective and return here if the // request is non-exclusive or if the writeback is // exclusive. handleSnoop(pkt, blk, true, false, false); } bool Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) { // Express snoop responses from master to slave, e.g., from L1 to L2 cache->recvTimingSnoopResp(pkt); return true; } Tick Cache::recvAtomicSnoop(PacketPtr pkt) { // Snoops shouldn't happen when bypassing caches assert(!system->bypassCaches()); if (pkt->req->isUncacheable() || pkt->cmd == MemCmd::Writeback) { // Can't get a hit on an uncacheable address // Revisit this for multi level coherence return 0; } CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); handleSnoop(pkt, blk, false, false, false); // We consider forwardLatency here because a snoop occurs in atomic mode return forwardLatency * clockPeriod(); } MSHR * Cache::getNextMSHR() { // Check both MSHR queue and write buffer for potential requests, // note that null does not mean there is no request, it could // simply be that it is not ready MSHR *miss_mshr = mshrQueue.getNextMSHR(); MSHR *write_mshr = writeBuffer.getNextMSHR(); // If we got a write buffer request ready, first priority is a // full write buffer, otherwhise we favour the miss requests if (write_mshr && ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) || !miss_mshr)) { // need to search MSHR queue for conflicting earlier miss. MSHR *conflict_mshr = mshrQueue.findPending(write_mshr->blkAddr, write_mshr->isSecure); if (conflict_mshr && conflict_mshr->order < write_mshr->order) { // Service misses in order until conflict is cleared. return conflict_mshr; // @todo Note that we ignore the ready time of the conflict here } // No conflicts; issue write return write_mshr; } else if (miss_mshr) { // need to check for conflicting earlier writeback MSHR *conflict_mshr = writeBuffer.findPending(miss_mshr->blkAddr, miss_mshr->isSecure); if (conflict_mshr) { // not sure why we don't check order here... it was in the // original code but commented out. // The only way this happens is if we are // doing a write and we didn't have permissions // then subsequently saw a writeback (owned got evicted) // We need to make sure to perform the writeback first // To preserve the dirty data, then we can issue the write // should we return write_mshr here instead? I.e. do we // have to flush writes in order? I don't think so... not // for Alpha anyway. Maybe for x86? return conflict_mshr; // @todo Note that we ignore the ready time of the conflict here } // No conflicts; issue read return miss_mshr; } // fall through... no pending requests. Try a prefetch. assert(!miss_mshr && !write_mshr); if (prefetcher && mshrQueue.canPrefetch()) { // If we have a miss queue slot, we can try a prefetch PacketPtr pkt = prefetcher->getPacket(); if (pkt) { Addr pf_addr = blockAlign(pkt->getAddr()); if (!tags->findBlock(pf_addr, pkt->isSecure()) && !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { // Update statistic on number of prefetches issued // (hwpf_mshr_misses) assert(pkt->req->masterId() < system->maxMasters()); mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; // Don't request bus, since we already have it return allocateMissBuffer(pkt, curTick(), false); } else { // free the request and packet delete pkt->req; delete pkt; } } } return NULL; } PacketPtr Cache::getTimingPacket() { MSHR *mshr = getNextMSHR(); if (mshr == NULL) { return NULL; } // use request from 1st target PacketPtr tgt_pkt = mshr->getTarget()->pkt; PacketPtr pkt = NULL; DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize()); if (mshr->isForwardNoResponse()) { // no response expected, just forward packet as it is assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL); pkt = tgt_pkt; } else { CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); if (tgt_pkt->cmd == MemCmd::HardPFReq) { // We need to check the caches above us to verify that // they don't have a copy of this block in the dirty state // at the moment. Without this check we could get a stale // copy from memory that might get used in place of the // dirty one. Packet snoop_pkt(tgt_pkt, true, false); snoop_pkt.setExpressSnoop(); snoop_pkt.senderState = mshr; cpuSidePort->sendTimingSnoopReq(&snoop_pkt); // Check to see if the prefetch was squashed by an upper cache (to // prevent us from grabbing the line) or if a Check to see if a // writeback arrived between the time the prefetch was placed in // the MSHRs and when it was selected to be sent or if the // prefetch was squashed by an upper cache. // It is important to check msmInhibitAsserted before // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it // will be sending a response which will arrive at the MSHR // allocated ofr this request. Checking the prefetchSquash first // may result in the MSHR being prematurely deallocated. if (snoop_pkt.memInhibitAsserted()) { // If we are getting a non-shared response it is dirty bool pending_dirty_resp = !snoop_pkt.sharedAsserted(); markInService(mshr, pending_dirty_resp); DPRINTF(Cache, "Upward snoop of prefetch for addr" " %#x (%s) hit\n", tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); return NULL; } if (snoop_pkt.isBlockCached() || blk != NULL) { DPRINTF(Cache, "Block present, prefetch squashed by cache. " "Deallocating mshr target %#x.\n", mshr->blkAddr); // Deallocate the mshr target if (mshr->queue->forceDeallocateTarget(mshr)) { // Clear block if this deallocation resulted freed an // mshr when all had previously been utilized clearBlocked((BlockedCause)(mshr->queue->index)); } return NULL; } } pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive()); mshr->isForward = (pkt == NULL); if (mshr->isForward) { // not a cache block request, but a response is expected // make copy of current packet to forward, keep current // copy for response handling pkt = new Packet(tgt_pkt, false, true); if (pkt->isWrite()) { pkt->setData(tgt_pkt->getConstPtr()); } } } assert(pkt != NULL); pkt->senderState = mshr; return pkt; } Tick Cache::nextMSHRReadyTime() const { Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(), writeBuffer.nextMSHRReadyTime()); // Don't signal prefetch ready time if no MSHRs available // Will signal once enoguh MSHRs are deallocated if (prefetcher && mshrQueue.canPrefetch()) { nextReady = std::min(nextReady, prefetcher->nextPrefetchReadyTime()); } return nextReady; } void Cache::serialize(std::ostream &os) { bool dirty(isDirty()); if (dirty) { warn("*** The cache still contains dirty data. ***\n"); warn(" Make sure to drain the system using the correct flags.\n"); warn(" This checkpoint will not restore correctly and dirty data in " "the cache will be lost!\n"); } // Since we don't checkpoint the data in the cache, any dirty data // will be lost when restoring from a checkpoint of a system that // wasn't drained properly. Flag the checkpoint as invalid if the // cache contains dirty data. bool bad_checkpoint(dirty); SERIALIZE_SCALAR(bad_checkpoint); } void Cache::unserialize(Checkpoint *cp, const std::string §ion) { bool bad_checkpoint; UNSERIALIZE_SCALAR(bad_checkpoint); if (bad_checkpoint) { fatal("Restoring from checkpoints with dirty caches is not supported " "in the classic memory system. Please remove any caches or " " drain them properly before taking checkpoints.\n"); } } /////////////// // // CpuSidePort // /////////////// AddrRangeList Cache::CpuSidePort::getAddrRanges() const { return cache->getAddrRanges(); } bool Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) { assert(!cache->system->bypassCaches()); bool success = false; // always let inhibited requests through, even if blocked, // ultimately we should check if this is an express snoop, but at // the moment that flag is only set in the cache itself if (pkt->memInhibitAsserted()) { // do not change the current retry state bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); assert(bypass_success); return true; } else if (blocked || mustSendRetry) { // either already committed to send a retry, or blocked success = false; } else { // pass it on to the cache, and let the cache decide if we // have to retry or not success = cache->recvTimingReq(pkt); } // remember if we have to retry mustSendRetry = !success; return success; } Tick Cache::CpuSidePort::recvAtomic(PacketPtr pkt) { return cache->recvAtomic(pkt); } void Cache::CpuSidePort::recvFunctional(PacketPtr pkt) { // functional request cache->functionalAccess(pkt, true); } Cache:: CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, const std::string &_label) : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) { } /////////////// // // MemSidePort // /////////////// bool Cache::MemSidePort::recvTimingResp(PacketPtr pkt) { cache->recvTimingResp(pkt); return true; } // Express snooping requests to memside port void Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) { // handle snooping requests cache->recvTimingSnoopReq(pkt); } Tick Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) { return cache->recvAtomicSnoop(pkt); } void Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) { // functional snoop (note that in contrast to atomic we don't have // a specific functionalSnoop method, as they have the same // behaviour regardless) cache->functionalAccess(pkt, false); } void Cache::CacheReqPacketQueue::sendDeferredPacket() { // sanity check assert(!waitingOnRetry); // there should never be any deferred request packets in the // queue, instead we resly on the cache to provide the packets // from the MSHR queue or write queue assert(deferredPacketReadyTime() == MaxTick); // check for request packets (requests & writebacks) PacketPtr pkt = cache.getTimingPacket(); if (pkt == NULL) { // can happen if e.g. we attempt a writeback and fail, but // before the retry, the writeback is eliminated because // we snoop another cache's ReadEx. } else { MSHR *mshr = dynamic_cast(pkt->senderState); // in most cases getTimingPacket allocates a new packet, and // we must delete it unless it is successfully sent bool delete_pkt = !mshr->isForwardNoResponse(); // let our snoop responses go first if there are responses to // the same addresses we are about to writeback, note that // this creates a dependency between requests and snoop // responses, but that should not be a problem since there is // a chain already and the key is that the snoop responses can // sink unconditionally if (snoopRespQueue.hasAddr(pkt->getAddr())) { DPRINTF(CachePort, "Waiting for snoop response to be sent\n"); Tick when = snoopRespQueue.deferredPacketReadyTime(); schedSendEvent(when); if (delete_pkt) delete pkt; return; } waitingOnRetry = !masterPort.sendTimingReq(pkt); if (waitingOnRetry) { DPRINTF(CachePort, "now waiting on a retry\n"); if (delete_pkt) { // we are awaiting a retry, but we // delete the packet and will be creating a new packet // when we get the opportunity delete pkt; } // note that we have now masked any requestBus and // schedSendEvent (we will wait for a retry before // doing anything), and this is so even if we do not // care about this packet and might override it before // it gets retried } else { // As part of the call to sendTimingReq the packet is // forwarded to all neighbouring caches (and any // caches above them) as a snoop. The packet is also // sent to any potential cache below as the // interconnect is not allowed to buffer the // packet. Thus at this point we know if any of the // neighbouring, or the downstream cache is // responding, and if so, if it is with a dirty line // or not. bool pending_dirty_resp = !pkt->sharedAsserted() && pkt->memInhibitAsserted(); cache.markInService(mshr, pending_dirty_resp); } } // if we succeeded and are not waiting for a retry, schedule the // next send considering when the next MSHR is ready, note that // snoop responses have their own packet queue and thus schedule // their own events if (!waitingOnRetry) { schedSendEvent(cache.nextMSHRReadyTime()); } } Cache:: MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, const std::string &_label) : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), _reqQueue(*_cache, *this, _snoopRespQueue, _label), _snoopRespQueue(*_cache, *this, _label), cache(_cache) { } #endif//__MEM_CACHE_CACHE_IMPL_HH__